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UNLEASHING THE POWER OF RAG: 
SUPERCHARGE YOUR APPLICATIONS 

Abstract

Generative AI models are at the cutting edge of artificial intelligence, 
transforming its capabilities and unlocking new frontiers. However, these 
models are not without their limitations, raising concerns about trust and 
reliability. AI-generated content can sometimes be inaccurate, biased, 
or even fabricated, leading to skepticism and hesitancy in its adoption. 
Moreover, issues like hallucinations, where the AI generates plausible but 
incorrect information, pose significant challenges for real-world and business 
applications. Additionally, access to specific and current data can be limited, 
hindering the model's ability to provide up-to-date information.

Generative models are powerful tools that can generate new and creative 
content. However, they are limited by the data they are trained on and may 
not be familiar with your organization's specific data, keywords, abbreviations, 
or access control policies.
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Introduction to RAG

Constructing an Effective RAG Production Pipeline

Retrieval-Augmented Generation (RAG) 

emerges as a promising solution to 

address these limitations and foster trust 

in generative AI models. RAG systems 

enhance the relevance and accuracy of 

generative AI responses by incorporating 

information from external data sources 

that were not part of the model's initial 

training. This integration of external 

knowledge empowers generative 

AI models to provide more reliable, 

unbiased, and up-to-date information, 

effectively addressing the concerns 

that have hindered their widespread 

adoption. It's like giving them a big library 

of information to help them make better 

decisions. This makes their creations more 

We will cover these six aspects for 

constructing an effective RAG pipeline:

•  Hybrid search 

•  Selection of embedding, fine-tuning, 

and re-ranking

•  Fine-tuning LLM for RAG

•  Chunking and retrieval strategies

•  Query expansion, routing, and query 

construction

•  Prompt engineering

Hybrid Search

Hybrid search in RAG pipelines bridges 

the gap between semantic and keyword 

accuracy. Its alpha parameter balances 

the influence of each search method. 

Embedding-based search isn't ideal for:

•  Finding names (e.g., Leonardo Da Vinci, 

Taj Mahal)

•  Understanding abbreviations (e.g., 

NATO, ASAP)

•  Identifying codes (e.g., SKU#12345, 

flight KL543)

accurate and trustworthy. 

RAG can also help the model understand 

the organization or domain-specific 

keywords, abbreviations, and vocabulary 

and their relation by enabling domain 

fine-tuning.

•  RAG makes AI models more relevant 

by connecting them to real-time 

information.

•  RAG makes AI models timelier by 

eliminating the need for frequent 

retraining.

•  RAG makes AI models more accurate by 

providing them with access to relevant 

data sources.

Keyword Search Limitations:

•  Synonyms: Searching for "happy" 

might miss articles using synonyms like 

"joyful" or "elated" because a keyword 

search just looks for exact matches.

•  Broad Topics: Looking up "bird" 

with keyword search could return 

everything from bird-watching tips to 

different bird species.

The best approach is to combine 

embedding-based search with 

keyword search. Think of it as a 

navigation system blending a detailed 

map (semantic) with GPS accuracy 

(keyword). You reach your destination 

faster and avoid wandering the 

wrong streets. By combining semantic 

retrieval with precise keyword 

matching, hybrid search offers:

•  Improved recall: Find relevant 

documents even if keywords are 

missing or rephrased.

•  Increased precision: Filters out 

irrelevant results that match keywords 

Potential Applications of RAG

RAG, a powerful combination of retrieval 

and generation models, unlocks incredible 

potential across diverse tasks. It excels in 

knowledge-intensive areas like question 

answering and information retrieval, 

providing accurate and contextually 

relevant results. For creative endeavors, 

RAG acts as a digital muse, inspiring 

writing and data-driven storytelling. But 

its impact extends beyond static content, 

powering real-time applications like 

chatbots, live captioning, and personalized 

news feeds. This versatile technology is 

sure to revolutionize how we interact with 

information in the future.

but lack semantic meaning.

Selection of Embedding, Fine-
tuning and Re-ranking

The success of retrieval systems 

hinges on the effective selection 

and combination of embedding and 

re-ranking models. While various 

architectures exist for both retrieval 

(dense encoders like Bi-encoders, 

Cross-encoders, and COLBERT) and 

re-ranking, a crucial challenge lies in 

striking a balance between retrieval 

accuracy and computational efficiency.

We recommend exploring the benefits 

of utilizing compressed embedding 

representations such as Binary 

Embeddings and Int8 Embeddings. 

These methods offer significant 

computational advantages without 

sacrificing retrieval performance. 

Additionally, architectures like 

MRL (Matryoshka) enable flexible 

embedding dimensionality, further 

optimizing resource utilization.
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We propose a novel approach for enhancing Information Retrieval (IR) systems by integrating the classical BM25 
algorithm with a state-of-the-art retrieval and re-ranking model trained on Colbert (late interaction) using Matryoshka 

embedding (variable dimensions) - its late interaction mechanism combined with token-level dimension flexibility.

Furthermore, we explore the efficiency of binary or quantized (int8) representations on top of this combined 
framework to achieve scalability while maintaining performance.

"

"

The secret sauce for top-notch 

RAG performance? A sprinkle of 

embedding magic and a dash of 

re-ranking. For maximal accuracy, 

integrate hybrid search with fine-

tuned embeddings and re-rankers.

Optimizing RAG precision demands 

meticulous attention to embedding 

selection and fine-tuning, coupled 

with powerful re-ranking models. 

Choose domain-aligned embeddings, 

evaluating them on use case-specific 

datasets. Analyze retrieval errors for 

targeted customization. Further, fine-

tune both embeddings and pre-built 

re-ranking models using supervised/

unsupervised techniques, followed 

by reiterative evaluation.

Semantic Search
(Hybrid) Re-ranking

Improved 
Relevance

#1

#2

#3

#4

#1

#2

#3

#4
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Fine-tune LLM for Better RAG 
Generation 

The perfect LLM for your RAG depends on 

your unique domain and goals. Choose 

wisely, evaluate rigorously, and fine-tune 

strategically for accurate and effective 

generation. Fine-tune your LLM for 

specific formats and styles of generation. 

Give your RAG system a technological 

makeover! Refine the LLM to nail specific 

formats and styles for a polished and 

professional touch.

Chunking and Retrieval - Best 
Practices

Large Language Models (LLMs) used in 

Retrieval-Augmented Generation (RAG) 

pipelines struggle to process massive 

documents in one go. That's where 

chunking comes in, like folding the map 

into manageable sections.

Six Chunking Strategies for Optimal 

Retrieval:

•  Fixed size: Fixed size word or by token 

size with some sliding window.

•  Content-based: Leverages document 

structure - Split by HTML tags, splits by 

headers, line breaks, or characters.

•  Variable size: Adapts to content; can 

append metadata, header, footer, and 

watermark to maintain context.

•  Multimodal: Handles different content 

types like text, tables, and images.

•  Structure aware: Analyzes document 

structure (e.g., property graphs) for deeper 

understanding.

•  Reference chunking: Summarizes 

variable-length chunks and creates links to 

the original text.

Intelligent retrieval in RAG systems 

refers to the use of advanced retrieval 

techniques to identify and retrieve relevant 

documents for a given query. These 

techniques go beyond traditional keyword 

matching and statistical measures to 

incorporate semantic similarity, contextual 

understanding, and knowledge graphs. 

The goal of intelligent retrieval in RAG 

systems is to provide LLMs with a more 

comprehensive and informative set of 

context documents, leading to improved 

text generation performance.

Five Retrieval Strategies for Intelligent 

Retrieval:

•  Sentence-window retrieval: Do not 

just retrieve the relevant sentence, but the 

window of appropriate sentences before 

and after the retrieved one.

•  Knowledge Graph-based retrieval: 

Knowledge graphs are structured 

representations of real-world entities 

and their relationships, providing a rich 

source of contextual information. By 

incorporating knowledge graphs into 

the RAG framework, systems can better 

understand the context of queries and 

retrieve documents that are not only 

semantically similar but also connected 

through relevant entities and relationships.

•  Recursive retrieval: with a summary 

node at the top and smaller chunked 

segments as child nodes. This structure 

facilitates efficient retrieval by enabling 

an initial search on the summary node 

followed by a refined selection from child 

nodes based on relevance scores.

•  Structure-aware retrieval: uses 

documents as property graphs and 

retrieves them accordingly.

•  Auto-merging retrieval: Segment the 

document into a hierarchical structure of 

chunks: 2048 words (top-level), 512 words 

(mid-level), and 128 words (leaf-level) 

retrieval, start with leaf-level chunks and 

merge them into their parent chunks if 

most leaf-level chunks within a parent are 

selected.

Few other points to consider for chunking 

and retrieval:

•  Recent Nvidia research says chunk size 

for embedding with 300 words with k=5-10 

when combined with 32k LLM performs 

better than providing full context. 

Our analysis demonstrates a positive 

correlation between chunk size and 

retrieval accuracy. Notably, chunking along 

page boundaries emerges as a simple 

yet highly effective approach. Sentence-

window retrieval gives more accurate 

results.

•  Complete search stacks do better

Hybrid search with domain fine-tuned 

re-ranking gives the best search results. 

It is a promising approach for improving 

the performance of semantic searches 

and retrieval augmented generations. This 

approach has the potential to provide 

more relevant and accurate results, which 

can lead to a better user experience.

Identify the good and the bad 

candidates

Normalize the score from hybrid re-ranking 

and discard documents below certain 

thresholds.

Query Expansion, Routing and 
Query Construction

Effective RAGs rely on query 

transformations like rewriting, expanding, 

and compressing user queries to improve 

information retrieval. Imagine asking, 

"Product launch guidelines?". An expanded 

query like "instructions, procedures, 

regulations for launching a new product?" 

would yield better results.

Routing and query construction further 

guide the search. Routing acts like a 

smart librarian, directing the query to 

RAG with more data significantly 

improves the results of Generative AI 

applications. Our recommendation 

says using a chunk size of 1000-2000 

with a top k value reranked to 10 

with an overlapping window of 150-

200 gives the best results.

https://arxiv.org/pdf/2310.03025
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the relevant data source (e.g., database, 

knowledge graph). Then, query 

construction translates the user's natural 

language into a format the chosen data 

source understands, ensuring accurate 

retrieval. Both steps are crucial for efficient 

and accurate information retrieval in RAG 

systems.

Prompt Engineering

Prompt engineering is considered a 

critical factor in achieving optimal 

performance from RAG. Here are a few 

more features:

•  Clear prompts guide retrieval, finding 

relevant facts and passages.

•  Tailored prompts direct generation, 

shaping style, format, and accuracy.

•  Overall, strong prompts boost 

performance, satisfy users, and 

unlock new applications.

Example: 

Bad Prompt: "What are the best leave 

policies?"

This prompt is vague and subjective, 

potentially leading to biased or 

irrelevant results.

Good Prompt: "Compare the 

effectiveness of different leave policies 

(e.g., unlimited leave, fixed-day allowance) 

in improving employee morale and 

reducing burnout."

This prompt is specific, neutral, and 

contextual, leading RAG to retrieve 

valuable information for informed 

decision-making. 

Remember, crafting the perfect prompt 

requires skill and adaptation. But with 

thoughtful design, you can unleash 

the full power of RAG for accurate and 

impactful results.

RAG Performance: Navigating the Landscape of Vector Databases for Optimal RAG Performance

Building production-ready RAG 

applications requires careful consideration 

of the underlying Vector Database (VDB). 

The sheer abundance of options, including 

PineCone, Quadrant, Weaviate, Redis, 

pgVector, Vespa, and others, necessitates a 

nuanced evaluation process. Selecting the 

optimal VDB hinges on several key factors 

that directly impact the performance and 

robustness of your RAG system.

Critical Factors for RAG-oriented VDB 

Selection:

•  Query Performance: Consider the VDB's 

query-per-second throughput to ensure 

it can handle the expected demand of 

your RAG application without latency 

bottlenecks.

•  Metadata Filtering: The ability to filter 

based on rich metadata associated with 

vectors is crucial for efficiently refining 

retrieved information and tailoring 

results to specific contexts.

•  Multimodal Embedding and Hybrid 

Search Support: If your RAG application 

utilizes diverse data modalities (text, 

audio, images), choose a VDB capable 

of storing and indexing multimodal 

embeddings effectively.

•  LLM Integration: Seamless integration 

with LLM application development 

frameworks like Langchain and 

LLamaIndex simplifies deployment and 

streamlines workflows.

•  Retrieval Optimization: Advanced 

features like nearest neighbor search 

optimizations and k-nearest neighbors' 

retrieval further enhance the accuracy 

and efficiency of information retrieval.

•  Licensing Considerations: Carefully 

evaluate licensing models and costs to 

ensure the chosen VDB aligns with your 

budget and deployment requirements.
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RAG Evaluation: Context Relevance, Answer Faithfulness, and Overall Response Quality

RAG evaluation needs to assess both 

generated text (faithfulness, answer 

relevance) and retrieved information 

(NDCG, recall, QPS). Balancing retrieval 

speed and accuracy is crucial. While zero-

shot or few-shot LLMs can evaluate basic 

metrics, fine-tuning an LLM specifically 

for RAG evaluation provides the most 

accurate and nuanced assessment of 

its performance. This involves tailoring 

the LLM to generate metrics like context 

relevance, answer faithfulness, and overall 

response quality.



External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

RAG Guardrails: Responsible by Design

Enabling best practices in RAG guardrails 

hinges on meticulous data governance, 

continuous monitoring, user-controlled 

generation, and embracing the latest 

research advancements. By nurturing a 

vigilant approach to RAG's development 

and deployment, we can unlock its full 

potential while ensuring responsible 

and trustworthy information access and 

generation.

RAG's powerful information retrieval 

requires robust guardrails. Ensure 

unbiased data, monitor performance, 

empower users with guided prompts, 

and leverage explainable generation 

techniques like Chain of Thought (COT), 

Chain of Verification (COV), React 

and ACT (REACT) for a reliable and 

trustworthy RAG experience.

To build a powerful and ethical RAG model, it's crucial to:

•  Optimize: Fine-tune settings, combine search methods, refine data, and craft clear prompts. 

•  Evaluate: Test your model thoroughly and address any biases. 

•  Deploy responsibly: Consider ethics, transparency, and user privacy.

By harnessing the potential of RAG with meticulous attention to detail and a commitment to ethical principles, you 

can unlock a new era of information access, creative expression, and intelligent interaction with the world around you. 

Remember, the greater the potential, the bigger the responsibility of use. Use RAG thoughtfully and responsibly to pave 

the way for a future where technology empowers and benefits all.

Conclusion

"Seven Failure Points When Engineering 
a Retrieval Augmented Generation 
System" makes a comprehensive list of 
places where failure can occur when 
designing RAG.

•  Missing Content: For questions 

related to the content but don’t have 

answers the system could be fooled 

into giving a response.

•  Missed the Top Ranked Documents: 

The answer to the question is in the 

document but did not rank highly 

enough to be returned to the user. 
In practice, the top K documents are 
returned where K is a value selected 
based on performance.

•  Not in Context: Consolidation 

strategy limitations: Documents with 

the answer were retrieved from the 
database but did not make it into the 
context for generating an answer. It 
occurs when many documents are 
returned from the database.

•  Not Extracted: Here, the answer 

is present in the context, but the 
LLM failed to extract the correct 
answer. Typically, occurs when there 
is too much noise or contradicting 
information in the context.

•  Wrong Format: The question involved 
extracting information in a certain 
format, such as a table or list, and the 
LLM ignored the instruction.

•  Incorrect Specificity: The answer is 
returned in the response but is not 
specific enough or is too specific to 

address the user’s need.

•  Incomplete Answers: which are 

not incorrect but miss some of 
the information even though that 
information was the context and 
available for extraction. An example 
question is, “What are the key points 
covered in documents A, B, and C?”. 
A better approach is to ask these 
questions separately.

Given the susceptibility of Retrieval-
Augmented Generation (RAG) systems 
to these seven failure points, thorough 
robustness testing becomes essential. 
This testing should evaluate the 
system's performance across diverse 
scenarios and question formats.

https://arxiv.org/abs/2401.05856
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