
WHITE PAPER

UNLEASHING THE POWER OF RAG:
SUPERCHARGE YOUR APPLICATIONS

Abstract

Generative AI models are at the cutting edge of artificial intelligence,
transforming its capabilities and unlocking new frontiers. However, these
models are not without their limitations, raising concerns about trust and
reliability. AI-generated content can sometimes be inaccurate, biased,
or even fabricated, leading to skepticism and hesitancy in its adoption.
Moreover, issues like hallucinations, where the AI generates plausible but
incorrect information, pose significant challenges for real-world and business
applications. Additionally, access to specific and current data can be limited,
hindering the model's ability to provide up-to-date information.

Generative models are powerful tools that can generate new and creative
content. However, they are limited by the data they are trained on and may
not be familiar with your organization's specific data, keywords, abbreviations,
or access control policies.

External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

Table of Contents

1. Introduction to RAG...3

a. Potential Applications of RAG...3

2. Constructing an Effective RAG Production Pipeline...3

a. Hybrid Search...3

b. Selection of Embedding, Fine-tuning and Re-ranking...3

c. Fine-tune LLM for Better RAG Generation...5

d. Chunking and Retrieval - Best Practices..5

e. Query Expansion, Routing and Query Construction...5

f. Prompt Engineering...6

3. RAG Performance: Navigating the Landscape of Vector Databases for Optimal RAG Performance...............6

4. RAG Evaluation: Context Relevance, Answer Faithfulness, and Overall Response Quality.................................7

5. RAG Guardrails: Responsible by Design..8

6. Conclusion...8

External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

Introduction to RAG

Constructing an Effective RAG Production Pipeline

Retrieval-Augmented Generation (RAG)

emerges as a promising solution to

address these limitations and foster trust

in generative AI models. RAG systems

enhance the relevance and accuracy of

generative AI responses by incorporating

information from external data sources

that were not part of the model's initial

training. This integration of external

knowledge empowers generative

AI models to provide more reliable,

unbiased, and up-to-date information,

effectively addressing the concerns

that have hindered their widespread

adoption. It's like giving them a big library

of information to help them make better

decisions. This makes their creations more

We will cover these six aspects for

constructing an effective RAG pipeline:

• Hybrid search

• Selection of embedding, fine-tuning,

and re-ranking

• Fine-tuning LLM for RAG

• Chunking and retrieval strategies

• Query expansion, routing, and query

construction

• Prompt engineering

Hybrid Search

Hybrid search in RAG pipelines bridges

the gap between semantic and keyword

accuracy. Its alpha parameter balances

the influence of each search method.

Embedding-based search isn't ideal for:

• Finding names (e.g., Leonardo Da Vinci,

Taj Mahal)

• Understanding abbreviations (e.g.,

NATO, ASAP)

• Identifying codes (e.g., SKU#12345,

flight KL543)

accurate and trustworthy.

RAG can also help the model understand

the organization or domain-specific

keywords, abbreviations, and vocabulary

and their relation by enabling domain

fine-tuning.

• RAG makes AI models more relevant

by connecting them to real-time

information.

• RAG makes AI models timelier by

eliminating the need for frequent

retraining.

• RAG makes AI models more accurate by

providing them with access to relevant

data sources.

Keyword Search Limitations:

• Synonyms: Searching for "happy"

might miss articles using synonyms like

"joyful" or "elated" because a keyword

search just looks for exact matches.

• Broad Topics: Looking up "bird"

with keyword search could return

everything from bird-watching tips to

different bird species.

The best approach is to combine

embedding-based search with

keyword search. Think of it as a

navigation system blending a detailed

map (semantic) with GPS accuracy

(keyword). You reach your destination

faster and avoid wandering the

wrong streets. By combining semantic

retrieval with precise keyword

matching, hybrid search offers:

• Improved recall: Find relevant

documents even if keywords are

missing or rephrased.

• Increased precision: Filters out

irrelevant results that match keywords

Potential Applications of RAG

RAG, a powerful combination of retrieval

and generation models, unlocks incredible

potential across diverse tasks. It excels in

knowledge-intensive areas like question

answering and information retrieval,

providing accurate and contextually

relevant results. For creative endeavors,

RAG acts as a digital muse, inspiring

writing and data-driven storytelling. But

its impact extends beyond static content,

powering real-time applications like

chatbots, live captioning, and personalized

news feeds. This versatile technology is

sure to revolutionize how we interact with

information in the future.

but lack semantic meaning.

Selection of Embedding, Fine-
tuning and Re-ranking

The success of retrieval systems

hinges on the effective selection

and combination of embedding and

re-ranking models. While various

architectures exist for both retrieval

(dense encoders like Bi-encoders,

Cross-encoders, and COLBERT) and

re-ranking, a crucial challenge lies in

striking a balance between retrieval

accuracy and computational efficiency.

We recommend exploring the benefits

of utilizing compressed embedding

representations such as Binary

Embeddings and Int8 Embeddings.

These methods offer significant

computational advantages without

sacrificing retrieval performance.

Additionally, architectures like

MRL (Matryoshka) enable flexible

embedding dimensionality, further

optimizing resource utilization.

External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

We propose a novel approach for enhancing Information Retrieval (IR) systems by integrating the classical BM25
algorithm with a state-of-the-art retrieval and re-ranking model trained on Colbert (late interaction) using Matryoshka

embedding (variable dimensions) - its late interaction mechanism combined with token-level dimension flexibility.

Furthermore, we explore the efficiency of binary or quantized (int8) representations on top of this combined
framework to achieve scalability while maintaining performance.

"

"

The secret sauce for top-notch

RAG performance? A sprinkle of

embedding magic and a dash of

re-ranking. For maximal accuracy,

integrate hybrid search with fine-

tuned embeddings and re-rankers.

Optimizing RAG precision demands

meticulous attention to embedding

selection and fine-tuning, coupled

with powerful re-ranking models.

Choose domain-aligned embeddings,

evaluating them on use case-specific

datasets. Analyze retrieval errors for

targeted customization. Further, fine-

tune both embeddings and pre-built

re-ranking models using supervised/

unsupervised techniques, followed

by reiterative evaluation.

Semantic Search
(Hybrid) Re-ranking

Improved
Relevance

#1

#2

#3

#4

#1

#2

#3

#4

External Document © 2024 Infosys Limited

External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

Fine-tune LLM for Better RAG
Generation

The perfect LLM for your RAG depends on

your unique domain and goals. Choose

wisely, evaluate rigorously, and fine-tune

strategically for accurate and effective

generation. Fine-tune your LLM for

specific formats and styles of generation.

Give your RAG system a technological

makeover! Refine the LLM to nail specific

formats and styles for a polished and

professional touch.

Chunking and Retrieval - Best
Practices

Large Language Models (LLMs) used in

Retrieval-Augmented Generation (RAG)

pipelines struggle to process massive

documents in one go. That's where

chunking comes in, like folding the map

into manageable sections.

Six Chunking Strategies for Optimal

Retrieval:

• Fixed size: Fixed size word or by token

size with some sliding window.

• Content-based: Leverages document

structure - Split by HTML tags, splits by

headers, line breaks, or characters.

• Variable size: Adapts to content; can

append metadata, header, footer, and

watermark to maintain context.

• Multimodal: Handles different content

types like text, tables, and images.

• Structure aware: Analyzes document

structure (e.g., property graphs) for deeper

understanding.

• Reference chunking: Summarizes

variable-length chunks and creates links to

the original text.

Intelligent retrieval in RAG systems

refers to the use of advanced retrieval

techniques to identify and retrieve relevant

documents for a given query. These

techniques go beyond traditional keyword

matching and statistical measures to

incorporate semantic similarity, contextual

understanding, and knowledge graphs.

The goal of intelligent retrieval in RAG

systems is to provide LLMs with a more

comprehensive and informative set of

context documents, leading to improved

text generation performance.

Five Retrieval Strategies for Intelligent

Retrieval:

• Sentence-window retrieval: Do not

just retrieve the relevant sentence, but the

window of appropriate sentences before

and after the retrieved one.

• Knowledge Graph-based retrieval:

Knowledge graphs are structured

representations of real-world entities

and their relationships, providing a rich

source of contextual information. By

incorporating knowledge graphs into

the RAG framework, systems can better

understand the context of queries and

retrieve documents that are not only

semantically similar but also connected

through relevant entities and relationships.

• Recursive retrieval: with a summary

node at the top and smaller chunked

segments as child nodes. This structure

facilitates efficient retrieval by enabling

an initial search on the summary node

followed by a refined selection from child

nodes based on relevance scores.

• Structure-aware retrieval: uses

documents as property graphs and

retrieves them accordingly.

• Auto-merging retrieval: Segment the

document into a hierarchical structure of

chunks: 2048 words (top-level), 512 words

(mid-level), and 128 words (leaf-level)

retrieval, start with leaf-level chunks and

merge them into their parent chunks if

most leaf-level chunks within a parent are

selected.

Few other points to consider for chunking

and retrieval:

• Recent Nvidia research says chunk size

for embedding with 300 words with k=5-10

when combined with 32k LLM performs

better than providing full context.

Our analysis demonstrates a positive

correlation between chunk size and

retrieval accuracy. Notably, chunking along

page boundaries emerges as a simple

yet highly effective approach. Sentence-

window retrieval gives more accurate

results.

• Complete search stacks do better

Hybrid search with domain fine-tuned

re-ranking gives the best search results.

It is a promising approach for improving

the performance of semantic searches

and retrieval augmented generations. This

approach has the potential to provide

more relevant and accurate results, which

can lead to a better user experience.

Identify the good and the bad

candidates

Normalize the score from hybrid re-ranking

and discard documents below certain

thresholds.

Query Expansion, Routing and
Query Construction

Effective RAGs rely on query

transformations like rewriting, expanding,

and compressing user queries to improve

information retrieval. Imagine asking,

"Product launch guidelines?". An expanded

query like "instructions, procedures,

regulations for launching a new product?"

would yield better results.

Routing and query construction further

guide the search. Routing acts like a

smart librarian, directing the query to

RAG with more data significantly

improves the results of Generative AI

applications. Our recommendation

says using a chunk size of 1000-2000

with a top k value reranked to 10

with an overlapping window of 150-

200 gives the best results.

https://arxiv.org/pdf/2310.03025

External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

the relevant data source (e.g., database,

knowledge graph). Then, query

construction translates the user's natural

language into a format the chosen data

source understands, ensuring accurate

retrieval. Both steps are crucial for efficient

and accurate information retrieval in RAG

systems.

Prompt Engineering

Prompt engineering is considered a

critical factor in achieving optimal

performance from RAG. Here are a few

more features:

• Clear prompts guide retrieval, finding

relevant facts and passages.

• Tailored prompts direct generation,

shaping style, format, and accuracy.

• Overall, strong prompts boost

performance, satisfy users, and

unlock new applications.

Example:

Bad Prompt: "What are the best leave

policies?"

This prompt is vague and subjective,

potentially leading to biased or

irrelevant results.

Good Prompt: "Compare the

effectiveness of different leave policies

(e.g., unlimited leave, fixed-day allowance)

in improving employee morale and

reducing burnout."

This prompt is specific, neutral, and

contextual, leading RAG to retrieve

valuable information for informed

decision-making.

Remember, crafting the perfect prompt

requires skill and adaptation. But with

thoughtful design, you can unleash

the full power of RAG for accurate and

impactful results.

RAG Performance: Navigating the Landscape of Vector Databases for Optimal RAG Performance

Building production-ready RAG

applications requires careful consideration

of the underlying Vector Database (VDB).

The sheer abundance of options, including

PineCone, Quadrant, Weaviate, Redis,

pgVector, Vespa, and others, necessitates a

nuanced evaluation process. Selecting the

optimal VDB hinges on several key factors

that directly impact the performance and

robustness of your RAG system.

Critical Factors for RAG-oriented VDB

Selection:

• Query Performance: Consider the VDB's

query-per-second throughput to ensure

it can handle the expected demand of

your RAG application without latency

bottlenecks.

• Metadata Filtering: The ability to filter

based on rich metadata associated with

vectors is crucial for efficiently refining

retrieved information and tailoring

results to specific contexts.

• Multimodal Embedding and Hybrid

Search Support: If your RAG application

utilizes diverse data modalities (text,

audio, images), choose a VDB capable

of storing and indexing multimodal

embeddings effectively.

• LLM Integration: Seamless integration

with LLM application development

frameworks like Langchain and

LLamaIndex simplifies deployment and

streamlines workflows.

• Retrieval Optimization: Advanced

features like nearest neighbor search

optimizations and k-nearest neighbors'

retrieval further enhance the accuracy

and efficiency of information retrieval.

• Licensing Considerations: Carefully

evaluate licensing models and costs to

ensure the chosen VDB aligns with your

budget and deployment requirements.

External Document © 2024 Infosys Limited

External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

RAG Evaluation: Context Relevance, Answer Faithfulness, and Overall Response Quality

RAG evaluation needs to assess both

generated text (faithfulness, answer

relevance) and retrieved information

(NDCG, recall, QPS). Balancing retrieval

speed and accuracy is crucial. While zero-

shot or few-shot LLMs can evaluate basic

metrics, fine-tuning an LLM specifically

for RAG evaluation provides the most

accurate and nuanced assessment of

its performance. This involves tailoring

the LLM to generate metrics like context

relevance, answer faithfulness, and overall

response quality.

External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

RAG Guardrails: Responsible by Design

Enabling best practices in RAG guardrails

hinges on meticulous data governance,

continuous monitoring, user-controlled

generation, and embracing the latest

research advancements. By nurturing a

vigilant approach to RAG's development

and deployment, we can unlock its full

potential while ensuring responsible

and trustworthy information access and

generation.

RAG's powerful information retrieval

requires robust guardrails. Ensure

unbiased data, monitor performance,

empower users with guided prompts,

and leverage explainable generation

techniques like Chain of Thought (COT),

Chain of Verification (COV), React

and ACT (REACT) for a reliable and

trustworthy RAG experience.

To build a powerful and ethical RAG model, it's crucial to:

• Optimize: Fine-tune settings, combine search methods, refine data, and craft clear prompts.

• Evaluate: Test your model thoroughly and address any biases.

• Deploy responsibly: Consider ethics, transparency, and user privacy.

By harnessing the potential of RAG with meticulous attention to detail and a commitment to ethical principles, you

can unlock a new era of information access, creative expression, and intelligent interaction with the world around you.

Remember, the greater the potential, the bigger the responsibility of use. Use RAG thoughtfully and responsibly to pave

the way for a future where technology empowers and benefits all.

Conclusion

"Seven Failure Points When Engineering
a Retrieval Augmented Generation
System" makes a comprehensive list of
places where failure can occur when
designing RAG.

• Missing Content: For questions

related to the content but don’t have

answers the system could be fooled

into giving a response.

• Missed the Top Ranked Documents:

The answer to the question is in the

document but did not rank highly

enough to be returned to the user.
In practice, the top K documents are
returned where K is a value selected
based on performance.

• Not in Context: Consolidation

strategy limitations: Documents with

the answer were retrieved from the
database but did not make it into the
context for generating an answer. It
occurs when many documents are
returned from the database.

• Not Extracted: Here, the answer

is present in the context, but the
LLM failed to extract the correct
answer. Typically, occurs when there
is too much noise or contradicting
information in the context.

• Wrong Format: The question involved
extracting information in a certain
format, such as a table or list, and the
LLM ignored the instruction.

• Incorrect Specificity: The answer is
returned in the response but is not
specific enough or is too specific to

address the user’s need.

• Incomplete Answers: which are

not incorrect but miss some of
the information even though that
information was the context and
available for extraction. An example
question is, “What are the key points
covered in documents A, B, and C?”.
A better approach is to ask these
questions separately.

Given the susceptibility of Retrieval-
Augmented Generation (RAG) systems
to these seven failure points, thorough
robustness testing becomes essential.
This testing should evaluate the
system's performance across diverse
scenarios and question formats.

https://arxiv.org/abs/2401.05856

External Document © 2024 Infosys Limited External Document © 2024 Infosys Limited

About the Authors

Amit Kumar

Amit is a senior architect with extensive experience in conversational, Generative AI and Classical AI. He has filed 3

patents and is passionate about translating cutting-edge AI research into real-world business solutions. Amit is also an

MLOps-certified professional and expert in creating production-ready AI services. His expertise spans a wide range of AI

technologies, from Discriminative AI and Classical AI to large language models. Amit has won multiple hackathons and

ranked among the top in many Kaggle and Hugging Face challenges.

Vishal Manchanda

Vishal is a Senior Principal Architect with Infosys Center for Emerging Technology Solutions and has over 24 years of
experience in the IT Industry. With expertise in Conversational AI, Vishal has been developing, architecting, and incubating
various IT solutions/IPs around contact centers, personalized intelligent interfaces involving hyper-contextual personalized
videos, voice interfaces, and comprehensive Conversational AI platforms.

• LlamaIndex - Data Framework for LLM Applications

• Seven Failure Points When Engineering a Retrieval Augmented Generation System (arxiv.org)

• LangChain

• A Guide on 12 Tuning Strategies for Production-Ready RAG Applications | by Leonie Monigatti | Towards Data Science

• Introduction | Ragas

References

https://www.llamaindex.ai/
https://arxiv.org/abs/2401.05856
https://www.langchain.com/
https://towardsdatascience.com/a-guide-on-12-tuning-strategies-for-production-ready-rag-applications-7ca646833439?source=user_profile---------3----------------------------
https://docs.ragas.io/en/latest/

External Document © 2024 Infosys Limited External Document © 2024 Infosys LimitedExternal Document © 2024 Infosys Limited

External Document © 2024 Infosys Limited External Document © 2024 Infosys LimitedExternal Document © 2024 Infosys Limited

© 2024 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

mailto:askus@infosys.com
https://www.infosys.com
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

