
VIEW POINT

THE POWER OF INTEGRATION:
UNLOCKING INNOVATION THROUGH
SOFTWARE-DEFINED HARDWARE

External Document © 2024 Infosys Limited

The boundaries between software and hardware have blurred, heralding the era of “Software-Defined Everything” (SDE). This paradigm
shift places software at the helm, steering the functionality and evolution of hardware. From autonomous vehicles to medical devices and
virtualized networks, the symbiosis between software and hardware is driving breakthrough innovations. Adopting a software-first approach
in hardware integration isn’t just a choice anymore—it’s the competitive edge.

This article explores the indispensable role of software-first strategies, the advantages of layered architectures, the power of hypervisors,
and the long-term value of proactive feature upgrade strategies. These practices, honed by industry leaders, serve as a compass for product
designers and developers navigating this dynamic landscape.

Why the Software-First Approach Is the Future

Historically, a hardware-first methodology ruled the landscape—
hardware was designed first, with software developed later to
support existing capabilities. This model restricted innovation,
locking products into fixed functionality. Enter the software-
defined era, where software orchestrates hardware’s capabilities
free from physical constraints. The benefits are profound: greater
flexibility, faster innovation cycles, and the ability to create
products that can evolve post-deployment.

For example, software-defined networks (SDNs) now dynamically
manage traffic by abstracting and optimizing hardware
interconnectivity. Similarly, in the automotive sector, software-
defined vehicles utilize centralized hardware waiting to be
activated through software updates, such as Tesla’s Autopilot or
Acceleration Boost features. This paradigm prioritizes adaptability,
future-proofing investments and delivering greater value to
end-users.

Powering this software-first approach is the application of layered software architecture. This time-tested model breaks the software stack into
distinct, interdependent layers, ensuring modularity, scalability, and efficiency.

Layered Software Architecture—The Blueprint for Seamless Integration

External Document © 2024 Infosys Limited

1. The Hardware Abstraction Layer (HAL)

• The HAL serves as the bridge
between hardware and software,
abstracting hardware complexity and
enabling reusability. HAL provides
a generic interface consumed by
software components above it,
reducing dependency on specific
hardware implementations. For
optimal results, developers should
embed industry standards like
OpenMAX DL (for multimedia
applications) or AUTOSAR’s ECU
Abstraction Layer (in the automotive
industry). These standards streamline
hardware-software integration while
enhancing interoperability across
diverse systems.

• Consider an accelerometer sensor
as an example. By abstracting its
memory addresses and control
registers into readable, symbolic
representations, HAL enables
developers to seamlessly switch
between hardware implementations
or vendors without affecting higher-
level software components.

2. The Middleware Layer

• Positioned above HAL, the
middleware layer standardizes
interactions across operating
systems, creating uniformity
while providing essential services
like security, persistent storage,
logging, and inter-service
communication. Integration
with protocols like OpenMAX
IL or standardized middleware
like AUTOSAR facilitates building
robust, cross-platform solutions.

• For instance, Android’s middleware
enables fluid app development
regardless of device hardware. By
standardizing these functionalities,
developers focus on innovation
rather than battling OS and
hardware disparities.

3. The Application Layer

• At the apex lies the application layer,
where end-user functionality is
realized through intuitive interfaces,
business logic, and intelligent
algorithms. Whether it’s image
processing in mobile devices or
Artificial Intelligence-driven insights
from hardware, this layer turns raw
data into actionable outcomes,
directly enhancing user experiences.

• By leveraging this layered approach,
developers enhance adaptability
and resilience, creating ecosystems
where hardware upgrades,
replacements, or enhancements
don’t disrupt the entire system.

External Document © 2024 Infosys Limited

Today’s systems, particularly in domains requiring versatile hardware stacks, demand multi-operating system support. Hypervisors rise to the
challenge, enabling multiple virtual machines to coexist on a single hardware platform.

Take the automotive industry. The intelligent cockpit of a modern vehicle may demand diverse operating systems such as QNX for vehicle
control, Android for in-car entertainment, and Linux for data processing. A hypervisor ensures these disparate environments operate
seamlessly alongside each other, optimizing hardware utilization without conflicts.

By emulating multiple hardware configurations on the same device, hypervisors also future-proof product development. Teams can test,
deploy, and support updates for isolated features without compromising the broader system.

Hypervisors—Pioneering a Multidimensional Approach

External Document © 2024 Infosys Limited

Long product lifecycles demand adaptability. A forward-thinking feature upgrade strategy isn’t just about staying relevant—it’s about building
deliberate pathways for future functionality.

Some leading practices include:

Organizations employing these strategies maximize their products’ longevity, enhance customer satisfaction, and open new revenue streams
through subscription-based upgrades or add-ons.

Strategic Feature Upgrades—Maximizing Tomorrow’s Potential

1. Hardware Readiness for
Future Needs

Many industry leaders pre-install
advanced hardware in devices,

enabling functionality to be
activated later through software

updates. Tesla’s approach to
releasing Autopilot features via

software, long after users purchase
cars, exemplifies this strategy.

2. Software Modularity for
Configured Delivery

Software developed with
modularity ensures that optional

features can be enabled as needed.
For instance, cardiac implant

programmers ship with standard
configurations but can be tailored
through activation approaches set

during installation.

3. Remote Software Upgrades

Seamless, secure, and remote
software updates have

revolutionized post-deployment
usability. Segregating core

intellectual property (deployed via
proprietary servers) from generic
components (distributed through
app stores) ensures security while

streamlining user access.

External Document © 2024 Infosys Limited

Software-hardware integration demands rigorous validation. Automated testing solutions like CppuTest accelerate error detection, especially
for middleware and application layers, reducing reliance on physical hardware during early development stages. Custom tools simulating HAL
interfaces further help developers uncover issues before hardware verification, shortening overall timelines. Such pragmatic approaches make
automation an indispensable lever for achieving quality and efficiency.

From software-defined networks enabling dynamic connectivity
to automotive systems delivering self-driving capabilities, the
marriage of software and hardware is not just transforming
industries—it’s reshaping expectations. These innovations are
fueled by strategic architectures, robust integration frameworks,
and an unrelenting commitment to adaptability.

Product designers and developers bear the responsibility of
translating these best practices into tangible solutions.

By adopting software-first principles, leveraging layered

architectures, integrating hypervisors, and enacting forward-

looking upgrade strategies, they can drive technological evolution,

unlocking products that stand the test of time.

At its core, the software-first approach is more than a method—it’s

a mindset. Through careful planning, seamless engineering, and a

willingness to innovate, it empowers us to “Navigate our Next.”

Investing in Automation for Reliability

The Road Ahead Integrating the Best

1. Embedded. (n.d.). Why a software-defined approach is the future for embedded and IoT. Retrieved from https://www.embedded.com/
why-a-software-defined-approach-is-the-future-for-embedded-and-iot/

2. Deloitte. (2021). Software defines vehicles. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/consumer-
business/deloitte-cn-cb-software-defines-vehicles-en-210225.pdf

3. Qualcomm. (n.d.). Snapdragon 8+ Gen 1 mobile platform. Retrieved from https://www.qualcomm.com/products/mobile/snapdragon/
smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-plus-gen-1-mobile-platform

4. AUTOSAR. (n.d.). Standards – Adaptive Platform. Retrieved from https://www.autosar.org/standards/adaptive-platform

5. Android Developers. (n.d.). Platform architecture overview. Retrieved from https://developer.android.com/guide/platform

6. Khronos Group. (n.d.). OpenMAX IL (Integration Layer). Retrieved from https://www.khronos.org/openmaxil

7. Khronos Group. (n.d.). OpenMAX AL (Application Layer). Retrieved from https://www.khronos.org/openmaxal

8. CppuTest. (n.d.). CppuTest manual. Retrieved from https://cpputest.github.io/manual.html

9. AUTOSAR. (n.d.). Standards – Classic Platform. Retrieved from https://www.autosar.org/standards/classic-platform

10. ITU-T. (n.d.). Software-defined networking (SDN). Retrieved from https://www.itu.int/en/ITU-T/sdn/Pages/default.aspx

11. U.S. Food and Drug Administration (FDA). (n.d.). Regulatory information. Retrieved from https://www.fda.gov/regulatory-information

12. Khronos Group. (n.d.). OpenMAX DL (Development Layer). Retrieved from https://www.khronos.org/openmax/dl

13. AUTOSAR Today. (n.d.). Guide to the Classic AUTOSAR architecture. Retrieved from https://www.autosartoday.com/posts/guide_to_the_
classic_autosar_architecture

14. Khronos Group. (n.d.). OpenCL Overview. Retrieved from https://www.khronos.org/api/opencl

References:

External Document © 2024 Infosys Limited

https://www.embedded.com/why-a-software-defined-approach-is-the-future-for-embedded-and-iot/
https://www.embedded.com/why-a-software-defined-approach-is-the-future-for-embedded-and-iot/
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/consumer-business/deloitte-cn-cb-software-defines-vehicles-en-210225.pdf
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/consumer-business/deloitte-cn-cb-software-defines-vehicles-en-210225.pdf
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-plus-gen-1-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-plus-gen-1-mobile-platform
https://www.autosar.org/standards/adaptive-platform
https://developer.android.com/guide/platform
https://www.khronos.org/openmaxil
https://www.khronos.org/openmaxal
https://cpputest.github.io/manual.html
https://www.autosar.org/standards/classic-platform
https://www.itu.int/en/ITU-T/sdn/Pages/default.aspx
https://www.fda.gov/regulatory-information
https://www.khronos.org/openmax/dl
https://www.autosartoday.com/posts/guide_to_the_classic_autosar_architecture
https://www.autosartoday.com/posts/guide_to_the_classic_autosar_architecture
https://www.khronos.org/api/opencl

© 2024 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Balaji Lakshmi Narasimhan
Senior Principal Technology Architect, Engineering Services, Infosys

About the Author

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.infosys.com/
mailto:mailto:balaji_l01%40infosys.com?subject=
https://www.linkedin.com/in/balaji-lakshmi-narasimhan-53b5337/

