
WHITE PAPER

INTRODUCTION TO FEATURE
FLAGGING USING LAUNCHDARKLY

Abstract

Applications with features continuously evolve. Modern SaaS based
applications are multi-tenant and always have a frequent release cycle.
But a big bang release of all features in production for all customers
simultaneously is not the preferred approach. Identifying the market
pulse and early feedback are important for any product. To support these
scenarios, DevOps provides capabilities like the canary releases model.
Feature flags also support this model by providing an alternative way of
enabling or disabling a feature based on certain conditions. But sometimes
switching on/off a feature may not be that simple, and the product team
might want to enable/disable a feature based on several parameters and
contextual information. Product teams usually build custom solutions to
support these capabilities. But leveraging a centralized system that can help
a rule-based evaluation model for feature flagging in different environments
must be considered. This article discusses one of the leading services in this
aspect - LaunchDarkly.

External Document © 2023 Infosys Limited

Capabilities
LaunchDarkly, a cloud based service, is highly scalable. It can
manage the feature flags in any application that can access
the service. Key concepts for using LaunchDarkly are Projects,
Environments, Feature Flags, Experiments, SDKs and Rules.

LaunchDarkly allows the creation of feature flags that the
application can evaluate during run time. This allows the
application to enable or disable features. Features are assessed
based on the context information provided by the application.

This helps to create rules based on the context attributes to
evaluate a feature flag.

In addition to providing a true/false value as the result of a feature
flag evaluation, LaunchDarkly also supports the evaluation result
in other types such as int, float, double, string and JSON format.
This can be used to get context-based configuration parameters
for applications during run time.

In Figure 1, the management user accesses the LaunchDarkly System and configures the projects, environments, feature flags and rules. The
client application uses the SDK to evaluate a feature flag for a context.

Figure 1 Conceptual model of LaunchDarkly

Management User Launch Darkly System Client Application

Con�gure Projects,
Environments, Feature
Flags, Target Rules,
Experimentals etc. UI Services

API
S
D
K

External Document © 2023 Infosys Limited

Concepts

Projects

Everything in LaunchDarkly is done through a project. The
administrator for the LaunchDarkly account creates the project
and adds management users. Users can create different
environments in the project, such as Dev, QA, Staging and
Production for an application. Projects can be configured to have
some default values for flags created within the project and the
kind of SDKs to evaluate the flags within the project.

Environments

LaunchDarkly allows the creation of different environments within
a project. All environments within a project have the same set of
feature flags. When a new feature flag is created, it is created in
every environment in the LaunchDarkly project. That flag is scoped
to the entire project. Flags can have different rules for evaluation
in different environments.

Flags

Flags are the core of LaunchDarkly. Different flags can be created
in each environment and enable or disable the targeting of the
flag. With it, one can assign the evaluation result based on the
flag targeting. i.e., the evaluation result of the flag when it is on
and off. Usually, it is used to provide a Boolean value, i.e., provide
true if the flag is enabled and false when the flag is disabled. But
LaunchDarkly offers many options to consider for flag evaluation
and the evaluation result. For example, a flag can be configured to
provide an integer, string or JSON value as the evaluation result.
So, one value can be set when the flag is enabled and another
when it is disabled. Also, one can add a conditional evaluation
result based on rules - say, when the flag is enabled/disabled,
check additional conditions based on the parameters available
as part of the evaluation context (like users, locations, or names,
email addresses, or any custom parameters) and provide the
configured evaluation value as the result.

Segments

LaunchDarkly allows the creation of multiple segments so users
can be added to different segments. This enables other flag
evaluations to be targeted to different segments of users, which
can be used for A/B testing kind of scenarios. LaunchDarkly also
supports segments created from existing rules, allowing users who
satisfy a rule to be moved to that segment. The specific value can
then be returned as the flag value for those users in the segment.

Experiments
Experiments allow testing the acceptability of features to:

• Validate new ideas by testing multiple variations of a feature.

• Determine the user base’s interest in a feature before
development.

• Gather performance data for a feature, service or API.

• Increase product adoption by determining the features users
prefer.

• Drive revenue and conversion rate by rolling out successful
variations to the rest of the user base.

Through experiments, metrics on features can be collected so that
analysis of the acceptance of the features becomes possible.

The chief supported metrics types are:

• Click conversion metrics: Tracks user interface (UI) element
clicks. For example, the frequency of the user clicks on the save
button. It is only compatible with JavaScript and React SDKs.

• Custom conversion metrics: Tracks events for arbitrary events,
such as whether a user search called a service.

• Custom numeric metrics: Tracks increases or decreases in
numeric value against a set baseline - for example, the number
of items in a user’s cart when they check out your online store.

• Page view conversion metrics: Tracks how many times a page is
viewed. For example, the number of views of blog posts based
on three different titles. This is only compatible with JavaScript
and React SDKs.

The usual types of experiments are:

• Validating a feature and its acceptance

• Mitigating risk by getting early results of new features, like
performance and new issues introduction

• Optimization based on feedback

• Can be used for Chaos engineering by introducing failures
based on some feature rules and studying the system behavior.

External Document © 2023 Infosys Limited

SDK
LaunchDarkly provides different kinds of SDKs for client
applications based on the application type. SDKs capitalize on
LaunchDarkly’s streaming APIs under the hood. This allows the
applications to have the latest feature flag information available,
thus enabling work in offline scenarios.

The key SDKs available are:

Server SDK

Server-side SDKs are usually used with server-side languages.
SDKs are available for server-side frameworks like .NET, Java,
Node and Python Got. These SDKs can be installed through the
respective package manager tools supported by frameworks like
Nuget and Maven. The primary object used in the server-side SDK
is an LDClient object which is initialized using an SDK key taken
from the admin portal. Each environment in a project will have a
separate SDK key. When initialized, the server-side SDK establishes
a connection with the LaunchDarkly endpoint, which is used to
send requests, get a response and send events. The client, a heavy
object, keeps an internal state, and having a single instance per
application is advisable. The client object allows us to get the
feature key variation by passing the feature key and a context. The
client also supports providing a default value for a feature flag
which is returned if an error occurs while evaluating the
feature flag.

Client SDK

Client-side SDKs are provided for major client-side frameworks,
which are native and web, like iOS, Android, Flutter, Xamarin, React
and Angular Vue. By default, flags are only available to server-side
SDKs. When a flag is created, we can choose to expose the flag to
SDKs that use client-side IDs, SDKs that use mobile keys, or both.
If we use a client-side or mobile SDK, one must expose the feature
flags for the client-side or mobile SDKs to evaluate them.

Targeting – Prerequisites, Rules

Targeting allows configuring what variations must be delivered
based on conditions when the feature flag is switched on.
Targeting consists of Prerequisites (set of other feature flags and
its values which will be required to enable the feature) and Rules
which can be used to provide a conditional evaluation of feature
flags. Parameters of the rules can be context-specific information
passed as part of feature evaluation. Rules allow configuring a
percentage rollout, where a percentage of users can have one
variation and another percentage has a different variation of the
feature flags. This helps to roll out new features in an incremental
fashion to users.

Figure 2 shows a sample UI to configure a project - here, instead of true/false variations, different variations are provided and serve
a variation with value error.

Figure 2 Sample UI

flag-test

flag-test

External Document © 2023 Infosys Limited

Relay proxy
LaunchDarkly also supports a proxy based model to access its API.
It provides a Go based application called relay proxy which acts
as the proxy between client applications and the LaunchDarkly
endpoint. It is a small application that connects to the
LaunchDarkly streaming API and proxies that connects to clients
within an organization’s network. LaunchDarkly recommends
using a Relay proxy based deployment model if the number of
servers accessing the system is huge (in thousands).

The relay proxy lets multiple servers connect to a local stream
instead of making many outbound connections to LaunchDarkly’s
streaming service. Relay proxy is an Open-Source project accessed
in the URL- LaunchDarkly Relay Proxy (github.com). Relay proxy is

also available as a docker image (Relay Proxy Docker).

Relay proxy is recommended in the following scenarios -

• Reducing the app’s outbound connections – Relay proxy resides
inside the organization’s network

• Keeping user data private

• Facilitating faster connections

• Meeting continuation of service requirements

• Reducing firewall configuration complexity for customers

• Increasing startup speed for serverless functions.

Figure 3 provides a typical deployment model using a Relay proxy.

Figure 3 Deployment model using Relay proxy (Ref : docs.launchdarkly.com)

Note that a Relay proxy of server-side SDKs can store the flag evaluations in a local storage system like Redis so that each time the client
application evaluates a flag, there is no external traffic to LaunchDarkly. The Relay proxy/SDK coordinates with LaunchDarkly to make the
data in local storage up to date.

Case study
Different product teams at a SaaS company, with many products
in its portfolio, use LaunchDarkly in various capacities. Figure 4
shows the key use cases where LaunchDarkly is used now.

• Most product teams leverage LaunchDarkly to turn on and off
certain features for different customers based on the product
features in their subscriptions. This helps with a seamless rollout
of new features to customers whenever they upgrade their
subscriptions.

• Some product teams use the capability to provide non-Boolean
value as feature flag evaluation for simple configurational
parameters, which need to be different for diverse customers.

• Few products use the flagging capability to test new features in
production by rolling out the features to a limited percentage of
users to get early feedback.

Different product teams plan to use LaunchDarkly for more
use cases by harnessing features like user segmentation and
experimentation.

Launch Darkly

ServersLoad BalancerRelay

Cache
(Redis/Elastic)

Streaming API

https://github.com/launchdarkly/ld-relay
https://hub.docker.com/r/launchdarkly/ld-relay
http://launchdarkly.com

External Document © 2023 Infosys Limited

Figure 4 LaunchDarkly Use Cases

Integrations
LaunchDarkly also supports integrations with different CICD tools,
including -

• Ansible Collection

• AWS CloudTrail Lake

• AWS CloudWatch RUM

• Azure DevOps

• Bitbucket Pipelines

• Cloudflare

• Compass

• GitHub Actions Flag Evaluations

• Heap

• LogDNA

• Pendo

• Release

• Terraform

• Zapier

• Zendesk

For example, the Azure DevOps integration allows controlled
rollouts to manage feature releases. With the integration, one can
define a percentage rollout for the feature flags as part of a release
task. More details on the specific integration functionalities are
available at Integrations (launchdarkly.com).

Launch Darkly

Product A Product B Product C

Role out new features to a
percentage of customers ,
increase the percentage based
on feedback and stability

Simple Configurations
based on User Context

Enable/Disable Feature for
customer

https://docs.launchdarkly.com/integrations

External Document © 2023 Infosys Limited

Why LaunchDarkly
There are different ways to manage feature flagging. Most
organizations build custom solutions to provide feature flagging
capability. Also, other solutions offer the feature flagging
capability, like Azure based feature management. Available as part
of Azure Cloud, it uses Azure App Configuration to manage feature
flags. Azure portal gives a Feature Manager with a UI to configure
feature flags. Azure based feature flags also support different filters
for features to target a percentage of users, specific time windows
or custom rules. But this does not support comprehensive features
provided by LaunchDarkly, like user segmentation, context-based
feature flagging and dynamic rules. Azure Feature flag only
supports Boolean variations. Also, the SDK provided by Azure is for
C# only, and code level changes are expected if the context needs
to be updated.

Other competing products in this area are worth exploring as
well. They include kameloon (kameleoon.com), a comprehensive
AB testing platform with feature flagging support. Others are AB
Tasty, Adobe Target and Optimizely (Optimizely). Most of it is in the
AB testing and user segment analysis category.

Conclusion
This document briefly introduces LaunchDarkly – a service that
can be used to manage feature flagging efficiency. Application
or product teams can rely on its capabilities to build and release
software features in a controlled manner, targeting different user
segments. As the ecosystem grows, it might add more capabilities
to get insights into the usage of certain released features by
utilizing the flags. Flags can also be used for a minimal level of
configuration to different segments of users based on the user
context or attributes. More detailed documentation is available on
the LaunchDarkly website, which is given in the references section.

https://www.kameleoon.com/en
https://www.optimizely.com/

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Jereesh Thomas
Senior Technology Architect, Infosys

Author

References
1 LaunchDarkly docs

2 Server-side SDKs (launchdarkly.com)

3 LaunchDarkly REST API Documentation.

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
mailto:askus%40infosys.com?subject=
https://docs.launchdarkly.com/home
https://docs.launchdarkly.com/sdk/server-side
https://apidocs.launchdarkly.com/

