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Abstract

Water accumulation in mines poses risks like flooding and 
hazardous in-rushes, compromising infrastructure and safety. 
Effective mine dewatering is essential for operational safety and 
efficiency, requiring continuous pumping to manage groundwater 
inflow. Traditional prediction methods, such as empirical equations 
and finite-element models, face limitations due to geological and 
hydrological complexities.

This paper describes an Artificial Intelligence (AI) based 
monitoring approach as a soft sensor for mine dewatering 
systems. Utilizing sensors to track water levels, flow rates, and 
pump power consumption, real-time data is fed into an AI/
Machine Learning (ML) model to detect anomalies and predict 
potential issues. The system employs Principal Component 
Analysis (PCA) for anomaly detection, focusing on static window 

PCA due to its simplicity and effectiveness in stationary 
environments.

Alerts for abnormal behaviors, such as pump failures or excessive 
groundwater inflow, provide early warnings to maintenance 
personnel. An additional monitoring system enhances these 
alerts with specific parameter checks, including water flow, pump 
current anomalies, and groundwater inflow. These empirical rules 
improve the interpretability and actionability of alerts.

This AI-based soft alerting system has been implemented in 
a large mining operation. It has demonstrated its potential to 
enhance the efficiency, safety, and cost-effectiveness of mine 
dewatering processes. Continuous monitoring and feedback loops 
ensure the system adapts to operational needs, offering a robust 
solution for mine water management.
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INTRODUCTION

The accumulation of water in mines can cause issues to the 
integrity of various mine infrastructures when excessive quantities 
of water combine with other materials, potentially resulting in 
dangerous in-rushes (Runs of Muck). A fundamental problem is the 
clogging of ore or waste passages formed because of excessive 
uncontrolled water in the active mining heading areas. 

Mining operations are also prone to flooding, a significant disaster 
that shuts down operations with costly repercussions and triggers 
Environmental Health and Safety (EHS) issues. Groundwater can 
infiltrate the working area when a mine extends below the water 
table. This is accelerated by heavy rainfall and drainage from 
backfill and nearby rivers and lakes. The constant influx should be 
continuously pumped out to prevent flooding. 

The dewatering system comprises of a set of pumping systems 
with high head capabilities and high kilowatts of power 
positioned at multiple levels to help raise the water and debris 
from the bottom of the pit. It may also involve additional booster 
pumps to overcome the larger vertical lift, especially when mining 
operations are at a greater depth. 

The mine dewatering requires continuous monitoring for 
anomalies that could occur due to environmental conditions, 
problems with the dewatering system components or other 
possible causes. Hence, monitoring is critical for uninterrupted 
and safe underground mine operations. Moreover, early detection 
of anomalies can help maintenance personnel take necessary 
precautions to avoid mine interruptions and safety issues.  Typical 
anomalies include:

Monitoring the operating conditions and the dewatering system 
enables early prediction of anomalies and the necessary remedial 
measures.

There are few published approaches related to predicting 
anomalies in a dewatering system. Fawcett et al. [1] published 
empirical equations and analytical solutions to predict dewatering 
requirements. This approach is complex and involves many 
uncertainties in accurately predicting water inflows due to the 
heterogeneous nature of geological formations and the variability 
in hydrological conditions. The models often rely on assumptions 
and simplifications that may not fully capture the real-world 
complexities, leading to potential inaccuracies in the predictions.  
Larry et al. [2] used a 2D finite-element model representing a 
geologic section across the deposit to understand the time-
variant de-watering requirements for a mine. This methodology 
has challenges in accurately representing complex geological and 
hydrogeological conditions. This complexity, coupled with the 
need for extensive field data and extended model boundaries, can 
lead to uncertainties that affect the model’s accuracy.

This paper describes an AI-based monitoring approach in which 
the mine dewatering system has various sensors to monitor 
different aspects such as reservoir water levels, quantity of water 
flown and pump power consumption. The aim is to utilize the 
available sensor data information and develop an AI/ML-based 
anomaly detection model that could highlight abnormalities 
in the mine dewatering system, indicating deviations from 
normal operations. This helps monitor and investigate such 
issues in advance so that proper preventive actions can be taken 
proactively.

Thus, proper dewatering is essential for 

Ensuring the safety of mining operations. Excess 
water in mines can lead to hazardous conditions, 
such as flooding, which can halt operations and 

endanger workers.

Excess inflow of 
groundwater, leading 

to overload of the 
current dewatering 

system.

Failure in any 
dewatering system 

components, such as 
pump failures, etc., 
leads to ineffective 
mine dewatering.

Maintaining dry conditions in the mine improves 
operational efficiency and equipment lifespan by 

reducing the wear and tear caused by water.
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OVERVIEW OF MINE DEWATERING SYSTEM

The mine dewatering system involves multiple pumps, storage units, settling ponds, and a surge bin, all monitored by sensors that provide 
real-time data. Figure 1 Outlines a high-level overview of a dewatering system for a mine that integrates an AI-based monitoring system for 
anomaly detection. 

The foundational component of the mine dewatering system consists of the physical infrastructure responsible for removing water from the 
mine.  There are sumps that collect water at different levels below the ground. Inflow water to the mine at various levels is channeled to the 
sumps at that level. Multiple pumps move water from sumps at the lower level to the ones at the higher level. At the ground level, the final 
lifted water is temporarily stored in  few ponds to allow sediments to settle before being pushed to the surge bin.

Mine Water Inflow:

Mine inflow water enters the system through the entry point indicated by the red arrow.

Pumps and Pipelines: Various levels of mines in the system represent pumps that move water 
through different stages of the dewatering process:

 o  Three (4000 – 1,2,3 pumps) pump the water from 4000 m below ground to 3000 m. 

 o  Two (3000 – 1,2 pumps) pump the water from 3000 m below ground to 1000 m.

 o  Two (1000 – 1,2 pumps) pump the water from 1000 m below ground to ponds 1 
and 2, the settling ponds to subsequent stages.

Storage Units / Sumps:

These represent storage units or tanks where water is temporarily held before being 
pumped out or further processed.

Water Ponds: 

Water is diverted to Pond 1 and Pond 
2 for settling. These ponds allow the 
sediments to settle before the water 
is further processed.

Surge Bin: 

The surge bin receives water from the 
pumps and serves as an intermediary 
storage before final disposal or 
treatment.

Figure 1: Mine Dewatering System Overview
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Data from the water flow, pump current, and water level sensors is continuously collected. This data provides real-time information about the 
operational status and performance of the dewatering system and is fed into an AI-based monitoring system. 

AI-BASED MONITORING OF MINE DEWATERING

Monitoring the mine dewatering is critical for continual and safe underground mine operations. Continuous monitoring is required to help 
detect potential anomalies early.  AI/ML algorithms can analyze this data to optimize operations, predict potential issues and ensure an alert 
about flooding of mines. The objective is to utilize the available sensor data information and develop an AI/ML-based anomaly detection 
model that could highlight the abnormalities in the mine dewatering system, indicating deviations from normal operations, and thereby 
help monitor and investigate such issues proactively to trigger timely actions.

The primary output of the AI-based monitoring system outlined in Figure 2 is to predict anomalies based on real-time data  from various 
sensors embedded in the mine dewatering system. When an anomaly is detected, the system triggers alerts or takes predefined actions to 
address the issue. This proactive monitoring helps maintain the efficiency and effectiveness of the dewatering system, preventing potential 
downtime or damage.
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Additionally, various sensors 
have been incorporated to 
collect the required data. 
It includes the following:

Water Level Sensors: These sensors track the water 
levels in different sumps of the dewatering system, 
ensuring that water is being effectively removed 
and managed. Each storage unit is equipped with 
level sensors to monitor the water level.

Water Flow Sensors: These sensors monitor the 
flow rate and volume of water moving through the 
system at different locations, i.e., entry or exit of 
the sumps. These sensors provide real-time data to 
ensure efficient operation and detect anomalies by 
tracking water movement throughout the system, 
allowing for precise control and anomaly detection. 

Pump Electrical Current Sensors: These sensors 
monitor the electrical current consumed by the 
pumps, providing insights into their operational 
status and efficiency. The electric current 
consumed is recorded in real-time to ensure 
efficient monitoring of operation and load on the 
pumps.  Each pump is equipped with an electric 
current sensor.

Mine Dewatering System

Sensor data (water flow sensors, pump current sensors, 
water level sensors)

Detection of anomalies

Figure 2: AI-based Monitoring system for Mine Dewatering

AI based Monitoring System 
for Mine Dewatering



An AI/ML-based monitoring system for mine dewatering offers several advantages over traditional systems:

Predictive Analytics: 

AI/ML systems can analyze historical data to accurately predict future water 
inflows and dewatering requirements. This helps in proactive management 

and reduces the risk of unexpected flooding.

Real-Time Monitoring and Adaptive Control: 

These systems can continuously monitor various 
parameters in real-time and adapt to changing 
conditions dynamically. This ensures optimal 
performance and efficient resource utilization.

Data Integration and Comprehensive Analysis: 

AI/ML systems can integrate data from multiple 
sources (e.g., sensors, geological surveys, weather 
forecasts) and provide a holistic view of the 
mine’s water management. This leads to informed 
decision-making.

Anomaly Detection: 

Advanced ML algorithms can detect anomalies 
and potential issues early on, allowing for timely 
interventions and reducing the likelihood of 
operational disruptions.

Scalability and Flexibility:

These systems are scalable and can easily 
adapt to different mining environments and 
changing operational requirements. This 
flexibility makes them suitable for a wide 
range of mining operations.
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Thus, AI/ML-based monitoring systems for mine dewatering provide superior predictive capabilities, real-time monitoring, and adaptive 
control, leading to enhanced efficiency, safety, and cost savings compared to traditional dewatering systems.



The AI-based mine dewater monitoring solution approach comprises an advanced algorithm that analyzes the data using machine learning 
techniques. The AI system processes and analyzes the sensor data to identify patterns and trends. It learns the normal operating conditions 
of the dewatering system. By comparing real-time data against learned patterns, the AI system can detect deviations that may indicate 
potential issues or anomalies. These anomalies could indicate problems such as pump malfunctions, blockages or unexpected water inflow.

This solution has been implemented using Principal Component Analysis (PCA), a dimensionality reduction and ML method that reduces a 
large data set into smaller data set while maintaining significant patterns and trends in the original data set.

Various approaches and methods of implementing the PCA technique for anomaly detection, viz., the Static window PCA and the Moving 
Window PCA technique [3], have been analyzed in detail. 

Static Window PCA Technique
This method involves analyzing data within a fixed, pre-defined time window to identify deviations from normal patterns (Figure 3). This 
method has two phases of implementation: an offline or training phase is used to construct and validate the PCA model, while the online 
phase is used to monitor the new testing samples. Any violation of the threshold set based on the training phase would indicate that an 
unusual event has occurred, causing a change in the covariance structure of the model. Based on the previous description, the abnormality is 
indicated if Q or T2 statistics exceed their confidence limits.
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SOLUTION APPROACH FOR AI-BASED MONITORING
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movement

size K

Figure 3: Static PCA: Training & Test Window
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Figure 4: Static Window PCA Approach

The flow diagram for this approach is shown in Figure 4. Some of the advantages and limitations of the static PCA technique are:

Simplicity: It is relatively 
straightforward and does 
not require complex 
computations.

The static window size must be chosen 
carefully. If the window is too large, it 
may dilute anomalies; if it is too small, 
it may miss broader trends.

It assumes that the system’s normal 
behavior is stationary within the 
window, which may not be valid in 
dynamic environments.

 The number of principal components 
used for reconstruction and the 
threshold for residuals significantly 
affect anomaly detection performance.

Effectiveness: It can 
effectively capture and 
model normal behavior 
in systems with stationary 
processes.

Dimensionality Reduction: 
It reduces the data 
complexity by focusing 
on the most significant 
variance features, making it 
easier to detect anomalies.

Advantages

Limitations

Fixed Window Size Stationary Assumption
Sensitivity to Parameter 
Choice
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Moving Window PCA (MWPCA) Technique
The MWPCA method can tackle some of the limitations of static window PCA by collecting enough data points in the time window, which 
can help build an adaptive process. Specifically, MWPCA removes older samples to choose the new ones representing the current operation 
process. Hence, for window size K, the data matrix at time k is xk=(xk-K+1, xk-K+2, xk-K+3,….xk) and, at time k+1, it is xk+1 = (xk-K+2, xk-K+3, xk-K+4,….xk+1). 
Figure 5 illustrates this. 

Figure 6 shows the flow diagram for this approach. Some of the advantages and limitations of Moving Window PCA technique are given below:

28/Jan/2021Weekly Project Status

Initial Training window Test window

Moving Window movement

movement

size K

Modified Training window

Figure 5: Moving Window PCA: Training and Testing Window

Figure 6: Moving Window PCA Approach
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Advantages

Disadvantages

Adaptability to Time-Varying Data: 
MWPCA can adapt to changes in the underlying 
patterns of time-series data because it applies 
PCA iteratively over sliding windows. This allows 
it to capture evolving behaviors and adjust its 
anomaly detection thresholds accordingly.

Localized Anomaly Detection: 
By analyzing data within sliding windows, 
MWPCA can detect anomalies that occur within 
specific time intervals. This localization helps 
pinpoint when anomalies arise rather than just 
identifying their presence.

Reduction of Computational Complexity: 
Compared to batch PCA methods applied 
over the entire dataset, MWPCA can reduce 
computational complexity by processing 
smaller, overlapping data segments. This makes 
it more feasible to apply to large-scale datasets.

Real-Time Monitoring: 
MWPCA operates in near real-time as it processes 
incoming data continuously. This capability is 
crucial for applications where timely anomaly 
detection is essential, such as monitoring 
industrial processes or network traffic.

Parameter Sensitivity: 
MWPCA performance can be 
sensitive to window size and 

overlap parameters. Selecting 
appropriate parameters 

requires domain knowledge 
and experimentation to balance 

capturing enough variability 
and ensuring timely anomaly 

detection.

Cumulative Error Propagation:  
Errors in PCA reconstruction 
can accumulate over time, 

especially if anomalies persist or 
the underlying data distribution 

shifts significantly. If not 
managed properly, this can 

lead to false alarms or missed 
detections.

Windowing Effects: 
Window size and overlap 

choice can influence detection 
sensitivity. Small windows may 

miss long-term anomalies, 
while large windows may 

smooth out short-term 
anomalies. Finding the optimal 
window configuration can be 

challenging.

Complexity of Implementation:  
Implementing MWPCA requires 

careful handling of data 
segmentation, PCA computation 

and anomaly thresholding. 
Ensuring robustness against 
different anomalies and data 

distributions may require 
additional preprocessing or post-

processing steps.

Since the characteristics of mine dewatering system is more static in nature, i.e., the behavior or pattern does not vary with respect to time, 
hence, the static PCA technique is appropriate for this use case. In addition, the static PCA technique is simple to implement and has faster 
execution. Based on this analysis, the static window PCA approach was implemented. 

This PCA technique generates an alert by detecting the abnormal behavior in mine dewatering for anomalies that could occur due to 
environmental conditions or problems with the dewatering system components (like pumps or piping system, etc.) or any other causes.  
However, based on this alert alone, it is hard for the maintenance personnel to troubleshoot and identify the root cause of the abnormal 
behavior.  An additional monitoring engine has been developed to address this challenge, which monitors all system parameters of the 
mine’s dewatering system.  The following section elaborates on this.
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SYSTEM PARAMETER MONITORING ENGINE  
The objective of an additional monitoring engine is to augment the main alert with additional alerts to enable maintenance personnel to 
investigate issues faster. This  monitoring engine monitors all the system parameters of the mine dewatering system individually. Additional 
alerts are generated corresponding to each parameter in case anomalies are detected with respect to these parameters being monitored.

Based on the physical understanding of the system and data behavior, some empirical rules are developed, and additional alerts are 
generated to complement the alert based on the PCA model alone. These alerts are indicated to the user in the ML Interpretation section to 
help them understand specific conditions behind a certain alert. 

The following five additional alerts are generated by the system parameter monitoring system. 

1. High flow Alert
The high water outflow from 1000L, 3000L and 4000L pumps is 
calculated based on the formula.

highLimit = (14D Average of Water Flow) * 

An alert is triggered when ‘14day avg of total water flow’ is higher 
than the ‘highLimit’

Based on historical data analysis, the ‘High Limit Threshold’ limit 
is 125%.

2. Low Flow Alert 
The low water flow from 1000L, 3000L and 4000L pumps is 
calculated based on the formula.

lowLimit = (‘14D Average of Water Flow^’ ) *

An alert is triggered when ‘14day avg of total water flow’ is less 
than the ‘lowLimit’

Based on historical data analysis, the ‘Low Limit Threshold’ limit 
is 95%. 

3. High full load pump current Alert
Pump overloading typically happens when the motor draws more 
current than its rated full load. This overloading of the pumps 
may be due to Misalignment between pump and driver, worn or 
damaged bearings, or, most of the time, the presence of a slug in a 
liquid of higher viscosity or blocked intake or discharge. 

  MeanPumpCurrent = (14D Average 
pumpcurrent,excluding value below 10amps)

  StdPumpCurrent = (14D standard deviation 
pumpcurrent,excluding value below 10amps)

An alert is triggered when a days mean current,excluding the value 
below 10amps is greater than MeanPumpCurrent+3*StdPumpCurrent

This is calculated for all the pumps located at 1000L, 3000L and 
4000L levels. 

4. Low full load pump current Alert
Pump underloading typically occurs when the motor draws much 
less current than the rated full load. This underloading may occur 
when the discharge line is disconnected or there is a loss of head 
pressure.  

  MeanPumpCurrent = (14D Average 
pumpcurrent,excluding value below 10amps)

  StdPumpCurrent = (14D standard deviation 
pumpcurrent,excluding value below 10amps)

An alert is triggered when a days mean current, excluding the value 
below 10amps is less than MeanPumpCurrent-3*StdPumpCurrent

This is calculated for all the pumps located at 1000L, 3000L and 
4000L levels.

5. High Ground Water Alarm
An alert is triggered when a daily average of the inflow to the 
ground exceeds the outflow of water from the ground by 125% 
on a 14-day average. This excludes the inflow of water from other 
sources. 

EstimatedGroundWater=ProcessWaterToGround  - 
ProcessWaterOutOfGround

An alert is triggered when a days mean EstimatedGroundWater is 
greater than 1.25 times 14D Average EstimatedGroundWater

 This approach has been successfully implemented in a large 
mining organization, with the model being piloted at the mine. 
Weekly meetings are conducted to review the alerts and get 
feedback from the users. The alerting logic is fine-tuned to provide 
better explanations for alerts, which helps improve the model’s 
usage.

( )95
100

( )125
100
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CONCLUSION

In conclusion, implementing an AI-based monitoring system for mine dewatering significantly enhances the safety, efficiency, and 
operational continuity of mining activities. Geological and hydrological complexities often hinder traditional methods for predicting 
dewatering requirements. The AI approach, incorporating sensor data and Principal Component Analysis (PCA), provides a more robust and 
accurate detection of anomalies, enabling proactive management of dewatering systems. The static window PCA technique, chosen for its 
simplicity and effectiveness, generates early alerts for abnormal behaviors such as pump failures and excessive groundwater inflow. These 
alerts are further refined by an additional monitoring engine, which checks specific system parameters to provide detailed insights.

The successful deployment of this system in a large mining operation highlights its practical benefits, including enhanced safety and 
improved operational efficiency. Continuous monitoring and feedback mechanisms ensure the system remains adaptive and responsive to 
changing conditions. This AI-based solution offers a comprehensive and scalable approach to managing the complex challenges of mine 
water management, setting a new standard for safety and efficiency in the mining industry.
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