
WHITE PAPER

AN INSIGHT INTO CREATING DOMAIN
SPECIFIC LANGUAGES (DSLS)
FOR MEDICAL DEVICES

External Document © 2023 Infosys Limited

1. Introduction
Domain Specific Languages (DSL), existent since the beginning of computing, are languages designed to address a specific problem. Some
well-known examples include SQL, HTML, make, regular expressions, UML and VHDL. An expert who knows the semantics of a particular
domain can express its requirements using a DSL. Thus, DSLs help reduce the communication gap between the domain expert and the
software developer.

DSLs are designed to factor in application stability and performance, essential considerations when building software that meets regulatory
requirements. For example, the financial, medical, and telecommunication domains are some regulatory domains where DSLs are used.

Medical device manufacturers rely on DSLs to derive productivity, lower cost of development and decreased time to market as they create
derivative products. This document presents the considerations for creating DSLs for medical device software development.

The document provides an overview of DSLs and enumerates some best practices in DSL design for medical device software. These views are
derived from the author’s experience developing Class 3 Medical device software using DSL.

In addition, this document does not cover the following -

• DSL implementation details such as DSL patterns. More detailed sources are available, including one in the Reference section[8].

• Details of building a parser as creating a new language will need parsing of the syntax. Again, the reader can refer to document [9] in the
Reference section.

2. Target Audience
The document targets medical product designers and medical
application developers who intend to use DSLs. It explores the
benefits of using DSL for developing software for medical devices.
It also presents potential design solutions derived from the
author’s experience, which can be utilized.

3. Usage of DSL – A landscape view
• DSL has been used in multiple domains. Some examples from

the financial domain are:[1]

• Actulus Modeling Language (AML) is a platform for defining
advanced life insurance and pension products and for
efficient computations.

• Financial Products Markup Language (FpML) - an XML-based
standard used for electronic dealing and processing over the
counter (OTC) derivatives.

• Money - a Scala DSL for money-related operations, the
language automatically performs conversions between
currencies as per the exchange rates specified.

• Some of the popular DSLs that are widely used today are - [2]

• SQL – A standard language for storing, manipulating and
retrieving database data.

• HTML - The standard markup language for defining the
meaning and structure of web content.

• Interface Definition Language (IDL) - is a generic term for
a language that lets a program or object written in one
language communicate with another program written in an
unknown language. For example, an Object Request Broker
(ORB) program would use an interface definition language to
“broker” communication between one object program and
another.

4. Why are DSLs created?
• There are several reasons why DSLs are created, including -

• To express a solution to a specific problem more intuitively in
a particular domain.

• Have powerful abstractions that solve complex domain-
specific problems in a simple manner.

• Document complex business requirements and or application
behavior of one domain that is machine readable.

• Domain experts can quickly review functional requirements
written in DSL by software developers.

5. What to expect from a DSL
5.1 A view of a use case realized with a DSL and a general-
purpose programming language

USE CASE: Let us try to get the hottest temperature in Atlanta for
August.

You can see how eloquently this use case is achieved using a DSL
such as SQL.

SELECT MAX(value) FROM TEMPERATURES WHERE city=”Atlanta”
AND month=”August”;

See the difference in the same use case achieved through a
general-purpose programming language.

City myCity(“Atlanta”);

MyList Temperatures;

Temperatures.setList(myCity.Month(“August”).getTemperatures());

int result = Temperatures.getMax();

cout<<”The Max temperature in Atlanta in the month of August is
“<< result << endl;

5.2 Advantages

There are several ways in which DSL is the better option as they:

• Are more concise

• Can provide powerful abstractions that help address complex
domain-specific problems in a simple manner

• Can be written more quickly and are intuitive in nature

• Can generate code and bring significant productivity
improvements

• Allow domain experts to write application requirements

• While the initial cost of DSL development is high in
comparison to a General Purpose Language (GPL), it can be
seen that the cost of development is lower when a DSL is
used over a period.[2]

5.3 Disadvantages

• The higher initial cost of development is mainly due to the
creation of the one-time tool used by the DSL.

• A DSL has a learning curve, and creators must create specific
training material.

• Debugging paradigms can be specific to the DSL used.

• DSL creators need domain knowledge and good language-
development knowledge; this is difficult to find.

External Document © 2023 Infosys Limited

External Document © 2023 Infosys Limited

6. DSL Implementation Approach.
A language in which the DSL is processed is termed the Host
Language. A DSL can be created using the following two
approaches. [3]

• Internal DSL uses a host language in a particular way to give
the host language the feel of a DSL. They are also referred to
as embedded DSLs or fluent interfaces. A fluent interface is
easily readable, like an English language sentence.

• External DSL has its own syntax; another variation is to
encode the DSL syntax in XML and uses regular XML parsers.
The syntax can be very powerful and processed using a YACC
or ANTLR parser.

• DSLs can be implemented using interpretation or Code
Generation, although it is easier to interpret the DSL.

7. Design considerations when creating
DSLs for medical device software

Medical device software can significantly benefit from the usage
of medical DSLs. It is beneficial in promoting close collaboration
between medical domain experts and application programmers.
Consider creating a DSL for a medical device application with the
following key functionality.

• User interface

• Network based device communication to read or change the
state of the medical device

• Storage of application session context

• This feature set will influence the design choices.

7.1 Language to base the DSL on

The following language choices would be appropriate.

• XML is suitable since transforming medical device data will
be essential to present to the end user.

• HTML will facilitate the display of charts or other standard
user interface components like buttons, checkboxes and lists.

7.2 Define the medical device requirement using DSL.

Medical device features and requirements are specific to the
domain they address, e.g., insulin pumps, cardiac implants and
neural implants.

Most device requirements involve algorithms and other
computations that are core parts of the device manufacturer’s
IP. Therefore, the DSL should represent these core device
requirements. When this is done, medical domain experts can
easily verify the requirements.

External Document © 2023 Infosys Limited

External Document © 2023 Infosys Limited

The other significant advantage of representing the domain

requirements using a DSL is that the software architecture is

partitioned into the domain and other generic application

requirements.

7.3 Data transformation

Medical devices typically use embedded platforms where memory

is often a constrained resource. Hence data generated by these

devices would be stored compactly and needs to be transformed

into a human readable form. The DSL can represent the data stored

in the device using a markup language such as XML. A layered

architecture can be designed to transform data as required by the

services that consume it.

7.4 Network communication

Medical devices use proprietary protocols to communicate with

applications that manage them. DSL is well suited to describe this

proprietary communication. This facilitates a closer collaboration

and a more effective review between the firmware engineers who

define the device communication and the software engineers who

work on applications that manage the device.

7.5 User experience design

Medical device applications ensure that the end user can input
only valid data. A few user experience design considerations
include the following -

• Restricting user inputs to acceptable values - DSL effectively
defines rules limiting the input to acceptable values and
providing a simple abstraction that application developers
can use.

• Display of UI screens with their transitions- A DSL can
represent the screens and their layout along with the widgets
used in the screens. It can incorporate data connections that
connect the input data sources to the widgets that display
this data. Action to be taken on click of the widgets along with
screen transitions can be programmed using the DSL.

7.6 Application Events

Medical device applications typically log and display
application events that have an impact on patient safety. These
application events may be triggered based on specific rules and
interdependencies between states of different system parameters.
A DSL will be able to represent these conditions and provide an
abstraction that is easy for the application developer to use.

External Document © 2023 Infosys Limited

8. DSL tools
A set of tools are needed to build DSLs, such as: [4]

• Textual DSL - If the DSL is based on XML, then off-the-shelf
XML parsers can be used. The XML elements could contain
complex expressions, which could be parsed by a parser such
as YACC or ANTLR.

• Graphical DSL - Graphical languages are intuitive, and domain
experts feel more at ease than textual languages. However,
graphical languages require building specific editors to be
used, such as Eclipse Sirius.

8.1 Some of the tools for developing DSLs

A few of the tools used to develop DSLs are -

Xtext – an open-source tool used to build textual languages, it is
integrated with Eclipse. It includes a parser, linker, type checker
and compiler. [5]

textX – a tool to build textual languages, textX is a Python
framework inspired by Xtext. The language’s grammar can be
defined with a syntax like the one used by Xtext. [6]

Sirius - an Eclipse project that helps create a graphical modeling
workbench using Eclipse Modeling technologies, including Eclipse
Modelling Framework (EMF) and Graphical Modelling Framework
(GMF). This can be used for building Graphical Languages. [7]

8.2 Debugging the DSL

If the DSL is external, a mechanism for debugging the DSL must
be created. Since parsers are used as part of the execution of the
DSL, it is easy to create a user readable log of all the events the
application handles and states that the application transitions
into. This log would be the primary source of debugging the
application. In addition, DSL users would need training on how to
use these logs.

8.3 Unit Test and Test Automation

Test framework can be designed usin g DSL to load test inputs,
perform user desired operations and compare the test output
against expected values. Furthermore, a test harness can be
created to automate the tests written using the DSL.

9. Summary
Here is a recap of the best practices discussed in the document -

• DSLs can provide powerful abstractions that help address complex domain specific problems in a simple manner.

• Medical device software development can significantly benefit from the usage of DSLs. In addition, this will promote close collaboration
between medical domain experts and application programmers.

• Medical device requirements that are part of the device manufacturer’s IP can be well represented using DSL. In addition, medical
domain experts can now easily verify these requirements resulting in higher software quality.

• Medical device applications try to enforce data integrity at various levels starting from user input. A DSL effectively defines rules that can
enforce these input constraints at different software layers and provide simple abstractions that application developers can use.

• The initial cost of DSL development and tooling will be higher than traditional software development. However, the software
development costs will decrease over a period due to increased developer productivity. In addition, the costs of releasing different
medical device product families will be lower as it will be easier to make an incremental change in the DSL based requirement
specifications.

Using DSL to create medical devices can transform medical product software development. It helps bridge the gap between domain experts
and software developers, making domain experts central to medical device software development. As a result, it can drive innovation and
cost optimization in the way medical devices are created. Successful creation of medical devices using DSLs can be achieved through careful
language design and by using the best practices followed by industry leaders, as discussed in the paper.

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Infosys Cobalt is a set of services, solutions and platforms for enterprises to accelerate their cloud journey. It o ers over 35,000 cloud assets, over 300 industry cloud solution blueprints and a thrivin
community of cloud business and technology practitioners to drive increased business value. With Infosys Cobalt, regulatory and security compliance, along with technical and nancial governance come
baked into every solution delivered.

Balaji Lakshmi Narasimhan
Senior Principal Technology Architect, Infosys Engineering Services

References:

[1] http://dslfin.org/resources.html

[2] http://cs448h.stanford.edu/DSEL-Little.pdf

[3] https://martinfowler.com/dsl.html

[4] https://tomassetti.me/domain-specific-languages/

[5] https://www.eclipse.org/Xtext/

[6] http://textx.github.io/textX/3.1/

[7] https://www.eclipse.org/sirius/overview.html

[8] https://martinfowler.com/dslCatalog/

[9] https://www.antlr.org/

About the author

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
http://dslfin.org/resources.html
http://cs448h.stanford.edu/DSEL-Little.pdf
https://martinfowler.com/dsl.html
https://tomassetti.me/domain-specific-languages/
https://www.eclipse.org/Xtext/
http://textx.github.io/textX/3.1/
https://www.eclipse.org/sirius/overview.html
https://martinfowler.com/dslCatalog/
https://www.antlr.org/

