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In recent years, the importance of labeled data for training 
machine learning models has persisted despite advancements in 
self-supervised learning. Manual labeling is still labor-intensive 
and costly. Synthetic data generation [1][2] offers a promising 
solution by creating labeled data that reduces the need for manual 
efforts. This technique helps address the challenges associated 
with acquiring and labeling large datasets needed for specialized 
tasks. 

There is, however, no single method for synthetic data generation 
that is universally applicable across all situations. Broadly, synthetic 
data generation can be categorized into three main types:

In this white paper, we will discuss these three types of synthetic 
data generation techniques together with their suitability for 
applications as well as their shortcomings. Thereafter we will 
briefly look at the aspect of using LLMs (large language models) 
for purposes of training other smaller or specialized LLM models. 
Finally, we will delve into problems that often arise with synthetic 
data together with techniques for evaluation of related quality 
aspects of data generated. 

Simulator based 
synthetic data 

generation: this approach 
generates data mimicking 

real-world phenomena.

Sampling from a latent 
space of features: 

this includes complex 
generative models like 

GANs and VAEs.

Resample, interpolate, 
transform existing data: this 
method creates new synthetic 

samples by manipulating 
existing data.

Simulator Based Synthetic Data Generation
Many machine learning environments require voluminous data 
that might be difficult or hazardous or simply too expensive to 
acquire. Let us look at some typical examples:

1.	 Training autonomous driving models requires data on rare 
dangerous events like car collisions and drifts. 

2.	 Gas leaks in domestic scenarios are rare, making it hard to 
represent all potential variations. 

3.	 Creating financial fraud instances from real examples yields 
only a small, specialized subset of possibilities.

4.	 Manually labeling data for object recognition in stores is 
prohibitively expensive and time-consuming.

Under these kinds of circumstances, a physical model based 
on a set of rules or dynamics that adequately represent the 
environment or the system for which the machine learning model 
is constructed can provide for a simulator that matches real world 
data [3][4]. In the recent past we have successfully generated a 
gas leak model based on the physical dynamics of a leaking gas 
pipe while 3D models generated from a few images of individual 
products have been used to generate large volumes of synthetic 
data for object recognition. 

A simulator can generate vast, varied synthetic datasets once built, 
covering many cases. However, they need to be custom-built; 
furthermore, designing a simulator requires deep understanding 
of system dynamics and may not always capture the full 
complexity of real-world scenarios.

This implies that simulator-based data generation is ideal when 
we can fully model the simulated system. Also, before using a 
simulator to create synthetic data, it must be validated to ensure 
the data aligns with physical principles and boundary conditions.

Resample, Interpolate, Transform Existing 
Data
In situations where the training of a machine learning model 
requires way more data than is available, we can generate a larger 
data set through oversampling or transformation [5] of the original 
samples. Some typical situations are:

1.	 Customer churn detection or anomaly detection where the 
training data is usually imbalanced -- that is one of the classes 
has very few representative samples (maybe 5% of the overall 
data set).

2.	 Healthcare data sets, where privacy concerns prevail in 
addition to insufficiency of data for certain categories.

3.	 Applications based on speech, text or image data lacking 
enough variations required to train robust models.

One prominent technique frequently used to address imbalanced 
datasets is the Synthetic Minority Over-sampling Technique 
(SMOTE) [6][7] applicable to multivariate numerical data. SMOTE 
generates synthetic samples for the minority class by interpolating 
between existing samples, effectively balancing the dataset. Its 
variant DeepSMOTE [8] extends the interpolation functionality 
with a deep learning model to generate image data for medical 
imaging applications.
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SMOTE and its variants like DeepSMOTE are robust, 
computationally efficient and can work with a small initial data 
set. However, biased or low-quality input data can result in 
generation of similarly flawed synthetic data. Additionally, SMOTE 
can occasionally generate out-of-distribution synthetic samples, 
thereby requiring filtering of generated data.

Data augmentation techniques, widely used in both computer 
vision and natural language processing, enhance diversity in 
existing data by introducing variations such as rotations, scaling, 
and cropping for images, synonym replacement and back-
translation for text, occasionally adding a controlled amount 
of noise for robust modeling or source obfuscation (as with 
healthcare data).

Data augmentation can significantly enhance model performance 
and generalization capabilities in a cost-effective manner. 
However, the transformations in data augmentation need to 
be appropriate, otherwise distorted output data can result. 
Augmented data therefore requires validity checking, for example, 
to ensure that outputs are grammatically correct and semantically 
similar for paraphrased or translated sentences.

Prompting diffusion model-based image generators to 
generate similar images to a given image can also be regarded as 
an augmentation technique. However, unlike mainstream data 
augmentation techniques, validity checking, lacking objective 
criteria, becomes difficult if not impossible to automate.

Sampling From a Latent Space of Features
Sometimes there might be sufficient data for an application to 
train a generative model, whereafter the same may be used to 
synthesize voluminous and varied data on lines of a simulator, e.g. 
synthesizing health records, data for self-driving cars, even tabular 
data. 

The method here typically involves sampling from a probability 
distribution followed by transformation using neural networks, 
as in Generative Adversarial Networks (GANs) and Variational 
Autoencoders (VAEs) [9][10]. Both methods in an abstract sense 
involves sampling from a latent representation space of 
features. GAN consists of a generator that synthesizes data and a 
discriminator that performs a reality check; this adversarial process 
allows GANs to create high-quality outputs that closely resemble 
real data. Conversely, VAEs encode input data into a latent space 
and then decode it, ensuring that the generated samples maintain 
the statistical properties of the original dataset.

While these approaches can generate diverse and high-fidelity 
datasets, they also present challenges. GANs can be complex to 
train and prone to issues like mode collapse, where the generator 
produces limited variations. VAEs, while generally more stable, 
may yield noisier outputs compared to GANs. Both need a fair 
amount of quality training data as well, because of which these 
techniques are typically limited to synthesizing data for areas 
where this applies.

LLM Based Synthetic Data Generation
Large Language Models (LLMs) revolutionize synthetic data 
generation by producing text that mirrors real-world patterns [11][12]

[13]. Their instruction-following capabilities allow for the generation 
of tailored datasets, enhancing controllability and minimizing 
human effort. This automation facilitates scalability and efficiency, 
exemplified by over 300 synthetic datasets available on platforms 
like Hugging Face as of June 2024.

LLMs utilize two main strategies for synthetic data generation: 
prompt engineering and multi-step generation. Prompt 
engineering involves crafting effective prompts that include 
task specifications, generation conditions, and in-context 
demonstrations. In contrast, multi-step generation breaks complex 
tasks into simpler sub-tasks, allowing for iterative data production. 

LLM based data synthesis suffers from challenges such as noisy 
or toxic samples. On one hand, this necessitates robust data 
curation strategies, including sample filtering using heuristic 
metrics to remove low-quality samples and label enhancement to 
correct erroneous annotations. On the other hand, evaluating the 
generated data in terms of direct assessments of data quality and 
indirect evaluations based on downstream model performance is 
crucial.

Key concerns about using LLM-based data generation for training 
smaller or domain-specific models include the potential for low-
quality or biased data, lack of domain expertise, and challenges in 
evaluating generated content. Additionally, issues related to data 
privacy and insufficient diversity sometimes occur.

Quality Issues and Evaluation Methods
The quality and validity of synthetic data are paramount, especially 
in sectors like healthcare and banking. Evaluating synthetic data [9]

[14][15] involves three main aspects: fidelity, utility, and privacy.

Fidelity assesses how well synthetic data mirrors real data through 
statistical comparisons and visual analyses. Techniques such as 
histograms, correlation plots, and metrics like KL Divergence 
and SSIM are employed. In addition, discriminators (as in GANs) 
wherever available, can also be used to assess data fidelity.

Utility evaluation involves comparing the performance of 
machine learning models trained on synthetic versus real data. 
Methods like Training on Real Data and Testing on Real Data 
(TRTR) and Training on Synthetic Data (TSTR) provide insights. 
Metrics such as GAN-train and GAN-test are also useful. For text 
data, ROUGE and BLEU scores are relevant for ensuring content 
invariance, while privacy-utility trade-off metrics balance utility 
with privacy concerns.

Privacy risks are significant especially in areas like healthcare with 
data potentially containing Personally Identifiable Information 
(PII). Re-identification attacks, where adversaries match synthetic 
to original data, highlight risks. Differential privacy methods, which 
add noise to the data generation process, offer strong privacy 
guarantees. K-anonymity ensures records remain indistinguishable 
among a group, though it might not be sufficient alone.
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Summarily, generating high-quality synthetic data requires rigorous 
evaluation to maintain fidelity, utility, and privacy. Robust evaluation 
methods and metrics ensure synthetic data is useful and secure, 
protecting individual confidentiality while maintaining data usability.

Conclusion
In conclusion, it is crucial to recognize that synthetic data generation 
does not adhere to a “one size fits all” paradigm. The choice of 
generation techniques and evaluation metrics must be customized 
to address the unique challenges of each domain, ensuring the 
production of reliable and effective synthetic datasets. Methods 
have their respective pros and cons and cost-benefit trade-offs. In 
all cases, the generated data should be rigorously tested for fidelity, 
utility, and privacy prior to use.
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