
WHITE PAPER

GENERATIVE AI – RECHARGING
DEVELOPER PRODUCTIVITY

Abstract

Generative AI has the potential to revolutionize software development by
automating tasks, improving code quality, and streamlining workflows across the
software development lifecycle. More significantly, it promises to enhance developer
productivity by addressing common challenges, eliminating inefficiencies, and
assisting with the creation of high-quality and secure code.

This paper examines the typical challenges developers face and how generative
AI approaches, including narrow transformers, can help achieve quantitative and
qualitative benefits across the software development life cycle (SDLC). It further
outlines key Infosys experiments and findings with generative AI tools like GitHub
Copilot and GitHub Copilot Chat. It also discusses the importance of comprehensive
training and upskilling programs to maximize the potential of any generative AI tool
in driving innovation in software development.

External Document © 2025 Infosys Limited

Introduction

What Influences Developer Productivity?

The growing intricacy of software development demands improved
developer productivity. Software engineering and artificial
intelligence (AI), two rapidly advancing fields, are now intersecting
in transformative ways that will significantly reshape the future of
software creation. Generative AI (GenAI), with its ability to produce
new content, offers an innovative approach to software creation.
Currently, GenAI models are capable of identifying patterns in data
and generating new content that mirrors the learned structure. These
models extend beyond natural language generation to include the

creation of music, art, design models, and even software code.

Merging generative AI with advanced software engineering can
unlock immense potential. Generative AI can accelerate various
software development lifecycle (SDLC) activities including code
generation, test automation, and bug fixes, thereby significantly
boosting productivity. When combined with low-code approaches, a
reuse strategy, and a higher degree of engineering and automation
maturity, it can create an environment for unprecedented
improvements in both code quality and developer productivity.

Developer productivity depends on multiple factors. Thus, a single metric may not accurately reflect the true productivity of development
teams. The SPACE framework (which stands for Satisfaction and Well-being, Performance, Activity, Communication and Collaboration, and
Efficiency and Flow), is an industry model developed to enhance the understanding and measurement of software engineering productivity.
It can be a relevant lever to consider when evaluating developer productivity in the context of infusing GenAI in the SDLC.

Developers often encounter numerous challenges such as technical, teaming, collaboration, communication, flow, cultural, and workplace
issues that may impact their productivity.

Generative AI has the potential to address many of the challenges
that developers encounter throughout the SDLC. It can improve
productivity, streamline workflows, boost cooperation, deliver
high-quality software solutions, and minimize incidents that affect
satisfaction, performance, activity, communication, and efficiency.

Apart from increasing output and improving quality, GenAI can also
analyze and understand complex patterns, enabling the creation

of intuitive and tailored user experiences. The infusion of GenAI
will impact many facets of the value chain, leading to changes in
working methods. For instance, AI-powered resource optimization
can improve planning and resource allocation. Generative AI can
also transform other areas such as enhancing developer skillsets,
introducing new positions, and shifting the development focus
from coding to strategic planning and design thinking.

Figure 1 | The SPACE framework

Satisfaction and Well-being

Activity

Performance

Communication and
Collaboration

Efficiency and Flow

• Burnout
• Lack of recognition
• Poor work-life balance
• Cultural issues and work environment

• Overlapping responsibilities
• Time spent on non-development tasks
• Context switching
• Lack of clarity on task prioritization

• Quality of deliverables
• Skill misalignment
• Unclear goals and metrics
• Technical constraints

• Ineffective communication channels
• Siloed teams
• Cultural barriers
• Unclear roles

• Bottlenecks in development processes
• Interruptions and distractions
• Inadequate development tools
• Procrastination and lack of focus

Generative AI: Revolutionizing Software Development for a New Era

Generative AI can significantly boost developer productivity by reducing the time spent on tedious tasks, improving code quality, and
enhancing end-user experiences. This technology aims to eliminate inefficiencies, reduce waste, and optimize resource utilization as well
as overall development paradigms. As the entire value chain fundamentally changes, it will necessitate the creation of new skills and roles
across the SDLC.

As software applications become increasingly complex and demanding, GenAI tools will become indispensable. For instance, as systems
grow more intricate, developers will find it increasingly challenging to maintain code quality, avoid security flaws, ensure compatibility and
scalability, and manage deadlines. By providing intelligent assistance and automation throughout the SDLC, generative AI tools can help
overcome these challenges, streamline processes, and improve efficiency.

1. Planning

GenAI improves project
management by analyzing
historical data, optimizing
resource allocation, and
developing work breakdown
structures. Key activities
include data analysis, scenario
planning, stakeholder
engagement, user story
generation, resource
allocation, budgeting, timeline
development, risk assessment,
and documentation.

4. Testing

It optimizes regression and
visual testing by improving
test case generation,
optimizing tests, detecting
bugs, and maintaining
test suites.

2. Design

It assists in creating user
interface (UI) designs by
identifying design patterns
and offering prototypes,
user experience (UX)
design, design optimization,
visualization, architecture, and
recommendations.

5. Deployment

GenAI optimizes deployment
pipelines, detects issues, and
ensures smooth upgrades.
Key activities include
infrastructure as code (IaC)
generation, configuration
optimization, deployment
strategies, and continuous
deployment pipelines.

3. Development

GenAI helps in writing and
reviewing code, creating tests,
and preparing documentation,
thereby enhancing overall
development efficiency.

6. Maintenance

Generative AI can predict
necessary maintenance,
identify technical debt, and
suggest optimizations.
Key activities include
automated bug detection,
predictive maintenance, code
refactoring, documentation
updates, incident management,
and training.

External Document © 2025 Infosys Limited

External Document © 2025 Infosys Limited

Experiments and Key Observations with GitHub Copilot and Copilot Chat

Real-time, context-aware code suggestions within integrated development environments (IDEs) from AI coding assistants are significantly
boosting developer productivity. Key examples of AI coding assistants include GitHub Copilot/Copilot Chat, Amazon Q for Developer,
Google Gemini Code Assist, Tabnine, and Replit. These tools not only decrease development lead time but also improve code quality,
security, and compliance. They enhance productivity through smart prompts, contextual understanding, and real-time explanations.
This allows developers to focus on more valuable tasks like innovation rather than spending effort on time-consuming and repetitive tasks.

Infosys has conducted experiments with GitHub Copilot in several phases, each involving distinct teams, projects, and objectives.
Our experiments include:

In the initial phase, a team
of Infosys developers
assessed the accuracy,
contextual relevance,
and usefulness of GitHub
Copilot in generating code
for various programming
languages.

• JIRA data connector
in Groovy

• Smart DevSecOps
pipeline in Python

• JMeter plugin for
DevSecOps platform
in GO

• People directory app
in Angular

• Generate code from
the skeleton or
template for Python,
GO, JAVA, Angular,
Groovy, and .NET

• Generate functional
and performance
testing scripts

• Generate code
for bug fixes for
existing code

• Create story point
estimates in Python

• Kubernetes validator
plugin for DevSecOps
platform in GO

• Create time-series
model in Python

• Generate unit test
cases for new and
existing modules

• Generate user stories
with acceptance criteria

• Generate design
diagrams

• Perform code reviews
and debugging

• Conduct code
explanation and
debugging

• Code migration

• Generate functional
test cases based on a
specific framework

• Generate code for SAP ABAP
and Salesforce Apex

• Generate Infrastructure as
Code

• Application maintenance
and support

• Code refactoring

• Bug detection and fixing

• Documentation
generation

• Code review and feedback

• Production support ticket
analysis and resolution

Code generation
Test scripts and

bug fixes
Generation of larger

size of code
Extending to the SDLC Packages, IaC, AMS

In the third phase,
Copilot was employed
to generate functional
and performance testing
scripts in addition to
addressing bug fixes.

In the second phase,
we attempted to create
significant portions of code
while meticulously tracking
productivity and quality by
contrasting our code with
a developer group that did
not use Copilot.

Our developers focused on
enhanced functionalities
like proprietary code
generation, IaC, code
reviews, unit tests,
debugging, and Copilot
Chat SDLC capabilities,
ensuring precision and
practical applicability.

1. Proof of concept
3. Testing and

bug fixes
2. Pilot project 4. Subsequent phases

PHASE

1

PHASE

3

PHASE

2

PHASE

4

PHASE

5

Figure 2 | Phase-wise use cases of GitHub Copilot

External Document © 2025 Infosys Limited

Key Observations from Infosys Experiments with GitHub Copilot

DetailsKey Observations

Positive outcomes

GitHub Copilot was able to do the following:

• Generate larger code segments

• Produce high-quality components for Python, Go, Java, Angular, Groovy, and .NET

• Generate meaningful unit and functional test cases

• Suggest appropriate code based on existing code

• Suggest improvements and identify potential issues in code, thereby spotting common
mistakes and provide inline code suggestions and help explain code snippets when
prompted, thereby helping understand code at a basic level

• Assist in code migration by suggesting equivalent code snippets in the target language or
framework

GitHub Copilot Chat was able to achieve the following:

• Assist in drafting user stories and acceptance criteria by engaging in a conversational format

• Brainstorm and structure user stories and offer suggestions for acceptance criteria, based on
inputs

• Generate design diagrams using Mermaid specifications. The Mermaid design-specific code
can be visualized using GitHub or any available Mermaid editor or viewer

• Perform code reviews by highlighting potential issues and offering suggestions based
on code snippets. It also helped debug by interpreting error messages and providing
troubleshooting steps, offering real-time feedback and suggestions

• Provide in-depth explanations and debugging. It could interpret code, explain functionality,
and help identify problems through conversation, offering explanations for code logic and
errors

• Provide guidance on migration strategies, help identify potential challenges, and suggest
solutions. It also assisted with code translation and adaptation

• Create test cases based on requirements or use cases and suggest appropriate testing
frameworks and techniques

• Assist in refactoring by suggesting more efficient or modern code structures and
practices. It helped in routine refactoring but may not always identify deeper architectural
improvements or context-specific refactoring needs

• Help understand common issues and suggest resolutions when analyzing support tickets

GitHub Copilot and Copilot Chat assisted with the following tasks:

• Generating IaC scripts for tools like Ansible, Terraform, and AWS CloudFormation

• Creating documentation, including comments and explanations for code. It can streamline
the documentation process but may require manual adjustments to ensure accuracy and
completeness, especially for complex or highly specialized code

• SAP ABAP – GitHub Copilot and Copilot Chat were effective in generating boilerplate code
and assisting with standard coding patterns

• Salesforce Apex – GitHub Copilot and Copilot Chat helped with code snippets, triggers, and
general Apex code patterns

Significant effort savings were observed.

No issues were found regarding code quality, maintainability, security, performance,
or open-source violations.

External Document © 2025 Infosys Limited

DetailsKey Observations

Limitations

Need for specific
intervention

• GitHub Copilot requires appropriate context to generate and recommend relevant and
meaningful code

• The user stories generated may require manual refinement to ensure completeness and
precision in acceptance criteria

• Functional test cases generated may need a thorough review and adjustment for
completeness

• The documentation generated might require manual adjustments to ensure accuracy and
completeness, especially for complex or highly specialized code

• Limited support for IDEs

• Performs best with languages and frameworks that are well-represented in public code
repositories

• Does not produce visual diagrams or integrate directly with diagramming tools

• Code migration is typically performed at the function, method, or file level. It is not
designed to migrate entire codebases in a single operation

• SAP ABAP specific syntax and business logic might pose challenges and may require
additional input or fine-tuning to manage complex scenarios

• Handling production support tickets often requires deep contextual knowledge of the
system and its users, which Copilot Chat was not able to fully grasp in complex scenarios

• Limited context window size

To summarize, GitHub Copilot and Copilot Chat have proven to be highly effective tools for generating and improving code, providing insightful
suggestions, and assisting with various development tasks. However, they do have limitations, such as the need for appropriate context and
manual refinements, particularly for complex or specialized scenarios.

External Document © 2025 Infosys Limited

Scaling Up with GitHub Copilot: Enhancing Developer Productivity Through AI Pair Programming

To leverage GitHub Copilot effectively, Infosys positioned it as an essential AI pair programming tool and rolled it out across the entire
organization. We encouraged our developers to integrate Copilot into their daily workflows and gathered extensive feedback and insights.
This data was then used to refine our training programs, establish best practices, and share lessons learned. This ensured that every team
member could maximize the benefits of this innovative tool.

Some of the key lessons from our GitHub Copilot implementation are:

Technical

Implement policies to
filter out public code and
ensure no data retention
for model improvements

Training program

To ensure seamless
adoption of GitHub
Copilot, we implemented
an immersive training
program tailored to meet
the diverse needs of our
developers. This program
encompassed a series of
interactive workshops,
hands-on coding sessions,
and real-time code review
exercises, designed to
familiarize teams with the
functionalities of Copilot.

Feedback

Regular feedback loops
were established to
continuously refine the
training content and
ensure that it remains
relevant and aligned with
the evolving needs of our
organization. Through
this holistic approach,
we have empowered our
developers to harness the
full potential of GitHub
Copilot, driving individual,
organizational, and client
success.

Knowledge repository

Developers were given
access to a comprehensive
knowledge base,
packed with tutorials,
best practices, and
troubleshooting
guides. Mentorship
opportunities were also
provided, allowing less
experienced developers
to learn from seasoned
professionals through AI
pair programming and
collaborative projects.

Coaching

Under immersive
coaching for GitHub
Copilot, we introduced
coaching programs where
Copilot experts provided
personalized guidance
tailored to individual
learning paces. These
programs focused on
practical problem-solving,
enabling participants to
apply Copilot capabilities
to real-world scenarios,
thereby enhancing their
coding proficiency and
confidence. Additionally,
we implemented regular
code audits to ensure best
practices and continuous
improvement.

Custom prompts

The Prompt Store
provides developers
with a rich selection of
customized prompts
aimed at enhancing
their productivity and
success. These carefully
selected prompts
enable developers
to address intricate
coding problems with
assurance and efficacy.

Infrastructure

Set up separate
infrastructure for Infosys
employees and those on
client networks

Responsive AI

Ensure AI regulations,
governance, bias fairness,
explainable models, and
data privacy

Legal

Include clauses on
ownership, warranty,
and data non-retention
for machine learning
purposes

Client approvals

Obtain client approvals
for the use of GitHub
Copilot, ensuring
compliance with data
privacy, security policies,
and contractual clauses

1. Implement guardrails for secure usage of GitHub Copilot, covering the following aspects:

2. Enhance developer success through comprehensive GitHub Copilot training across the following areas:

External Document © 2025 Infosys Limited

Figure 3 | GitHub Copilot adoption and benefits at Infosys

Harnessing Narrow Transformers: A Tailored Alternative to GitHub Copilot

The Narrow Transformer Solution Approach by Infosys

Infosys has been monitoring the progress of narrow transformers, which demonstrate strong potential when using generative AI. Open-
source models often struggle with generating domain-specific content due to their general training data. Conversely, narrow transformers
excel at generating highly specialized content. By focusing on domain-specific knowledge, they outperform general models in accuracy and
relevance, making them ideal for tailored applications.

Our strategy was to create narrow transformers fine-tuned with in-house proprietary knowledge, starting with an open-source model
tailored for our industry.

Curated models

By employing the narrow transformer approach, we have
developed specialized AI models derived from open-source large
language models (LLMs). These models are tailored to specific
industry domains and excel at general coding tasks such as code
completion, summarization, and documentation.

Architecture selection

Infosys’ proven assessment and architectural selection process
includes:

• Choosing the right model – Determine the appropriate model
size, evaluate training data size, consider fine-tuning/pre-
training options, quantization, and reinforcement learning
from human feedback (RLHF)

• Designing the inference deployment architecture – Optimize
request batching, enhance inference speed, and ensure
observability

Infrastructure

We used the following infrastructure:

• GPU provisioned on-premises (For example, NVIDIA A100 –
40 GB GPU can support a 2 billion parameter model and can
handle up to 100 concurrent users, depending on the specific
workload and optimization)

• GPU compatible hardware

• Installation cost or cloud provisioning of hardware

• API development, inference tuning, and testing

Custom plugins

We leveraged custom plugins for VS Code, Visual Studio, IntelliJ
IDEA, and Eclipse, connected to proprietary open-source models
like Codegen and StarCoder. These plugins were fine-tuned
for specific tasks such as code completion, generation, and
documentation.

Narrow transformers that are developed and fine-tuned from
open-source models, based on software programming languages,
possess a variety of capabilities. Figure 4 lists out these capabilities.

 Developer productivity

 Faster coding

 Reduced errors

 Increased efficiency

 Code quality

 Improved readability

 Enhanced maintainability

 Adherence to best practices

 Turnaround time

 Accelerated development

 Shorter project cycles

 Faster time-to-market

 Engineering practices

 Standardized coding

 Consistent style guidelines

 Improved collaboration

 Learning curve

 Simplified onboarding

 Faster knowledge acquisition

 Fewer learning barriers

19,000+ 9.6+ million 6.17 million 10+
developers LOC

accepted code
suggestions languages

External Document © 2025 Infosys Limited

Figure 4 | Capabilities of narrow transformer-based models

Figure 6 | Key features of NT-Java-1.1B

Figure 5 | Key features of IDE plugins

Custom plugins for narrow transformers

‘NT-Java-1.1B’ – A specialized model by Infosys

Custom plugins for popular IDEs can connect to these narrow transformers to then generate high-quality code snippets in multiple
programming languages (such as Java, Python, C/C++, and SQL) from natural language descriptions or partial code inputs. Additionally,
they can generate unit tests, comments, and documentation for existing codebases, as well as refactor and optimize code for performance
and readability.

Infosys has created a groundbreaking NT-Java-1.1B Model, which is a tailored language model set to transform Java programming at Infosys.
Meticulously researched, developed, and trained, this exceptional NT-Java-1.1B model operates without needing high GPU compute power
and delivers impressive results.

Code Completion

Get instant suggestions and
code snippets to streamline your

coding process

Code Generation

Generate boilerplate code,
reducing the time and effort

required for routine coding tasks

Desktop Integration

Optimized for desktop use,
providing a powerful tool that

can be used offline

• Generation of code, based on descriptions
• Automated completion of code to accelerate

development

• Migration of code from legacy to modern AI-based
technologies

• Automated generation of unit test cases, based on
the code, to accelerate CI/CD pipelines

• Generation of documentation from code, to assist
with legacy modernization

Code generation and
auto-completion

Translation between languages

Code validation

Extracting business logic

Specific to enterprise,
code, and tasks

Control of
enterprise data
and code

Higher
productivity

Proven Infosys architecture and
engineering

Narrow Transformer

1 2

Code
generation

Code
completion

3

Generate
microservices

4

Multiple
suggestions

5

Telemetry

6

Intelligent
updates

7

Reinforcement
learning with

human feedback
(RLHF)

Coding AI
twin

8 9 10 11 12

13

Local AI
model

configuration

Chat
Unit

testing
Code

documentation

Code
validation

AI in Software Development Life Cycle (SDLC)
The integration of AI and generative AI technologies has significantly
transformed the SDLC. Established practices now include AI-assisted
requirements collection, user story creation, automated code
production, unit test generation, code review processes, functional test
case and script creation, test maintenance, and optimization. Emerging
areas include AI-driven project management, predictive maintenance,
and adaptive deployment strategies. Additionally, advancing fields
cover AI-enhanced design and architecture, UI/UX creation, application
maintenance and support, continuous learning systems for software
development, and ethical AI governance within the SDLC.

As GenAI continues to evolve, it is anticipated to further transform
traditional SDLC stages, blur phase boundaries, introduce new
considerations such as AI reliability and bias mitigation, and redefine
the role of human developers in an increasingly AI-supported
environment.

Evangelization, Upskilling, and Coaching Programs for Generative
AI Tools

To ensure broad acceptance of and expertise with GenAI tools, a
multifaceted strategy is essential. This involves educating developers

on the advantages and use cases of these tools, providing resources
such as tutorials and workshops, and fostering a collaborative
environment through knowledge-sharing and hackathons. Some of
the key steps include:

• Creating and sharing success stories and case studies that
demonstrate how generative AI tools have enhanced developer
productivity and software quality across various scenarios and
domains

• Organizing and participating in dedicated sessions, webinars,
workshops, hackathons, and communities of practice to
showcase and demonstrate the features and capabilities of
GenAI tools while also soliciting feedback and suggestions from
users and stakeholders

• Developing and offering online courses, tutorials,
documentation, and certification programs to help developers
learn the fundamentals as well as advanced topics on GenAI
along with the ethical and social implications of using these tools

• Establishing and adhering to guidelines and standards for
developing, testing, deploying, and maintaining software
products that utilize GenAI tools while ensuring data quality,
security, privacy, and compliance

External Document © 2025 Infosys Limited

Infosys Topaz BankingSLM and Infosys Topaz ITOpsSLM
Infosys has introduced innovative small language models (SLMs) like
the Infosys Topaz BankingSLM and Infosys Topaz ITOpsSLM. These
models leverage NVIDIA AI and Infosys Topaz to create a strong
foundation for scalable enterprise AI solutions.

Developed at the Infosys Center of Excellence for NVIDIA
technologies, these SLMs use both general and industry-specific
data. They are enhanced through NVIDIA AI Enterprise and NVIDIA

AI Foundry in collaboration with Sarvam AI. They are also fine-tuned
with Infosys data for integration into solutions like Infosys Finacle and
Infosys Topaz for business and IT operations, thereby providing robust
foundational models for industry-specific applications.

We also offer these models as services such as pretraining-as-a-service
and fine-tuning-as-a-service. These services help businesses develop
custom AI models securely and in compliance with industry standards.

Digital self-learning

Self-paced digital
learning

Immersive generative
AI training

Instructor-led
sessions

Continuous learning

Open Q&A hosted
by coaches

Embedded generative
AI coaching into sprint

process

Hands-on,
on-floor coaching

Receive access to GenAI tools
(pre-work)

Apply GenAI in the next sprint
with an expert

Learn how to leverage GenAI
across the SDLC

Ongoing questions
addressed by CoE

A bench of coaches, trained on account teams, to ramp up CoE capacity

Figure 7 | Generative AI coaching – Upskilling developers for higher productivity levels

Such a strategy can yield higher productivity among trained users through:

Better code quality and
acceptance rates:

Precise guidance leads
to better quality code

and higher acceptance
rates.

Increased team
productivity:

Streamlined risk
management and prompt
strategies accelerate task

completion.

Increased Copilot
engagement:

Focused training
enhances the adoption
and impact of GitHub

Copilot.

Lower error rates:

Review of suggestions
from GitHub Copilot

can reduce errors and
debugging time.

Enhanced learning and
skill development:

Real-world exercises
improve daily skills and

knowledge.

External Document © 2025 Infosys Limited

Qualitative and Quantitative Benefits of Generative AI in the SDLC

A Peek into the Future of Software Development

Conclusion

The benefits of GenAI tools are both qualitative and quantifiable. These tools have the potential to revolutionize the SDLC by making it faster,
more efficient, and more creative. However, it is important to note that generative AI tools are still under development and should not be
seen as a silver bullet. Developers must continue to use their judgment and expertise to ensure these tools are used effectively.

The targeted application of AI/GenAI in software engineering yields significant effort savings. For instance, GitHub Copilot reduces effort by
25-30% on new projects (greenfield) and 15-20% on existing projects (brownfield).

The use of generative AI tools within the SDLC has significantly enhanced automation, intelligence, and collaboration. These advancements
empower developers to build superior software products more efficiently. By leveraging these tools, development teams can accelerate
innovation, improve code quality, and deliver value to end-users swiftly and confidently.

The future of GenAI holds immense potential to further revolutionize developer productivity. Key opportunity areas include:

Generative AI is a game-changing opportunity to empower
developers and redefine software development processes. It
automates development work, enhances code quality, and
manages administrative tasks across the SDLC. It significantly
boosts productivity by freeing developers from the repetitive tasks
of code writing and routine testing.

Future innovation in GenAI will include tailored development
environments and domain-specific AI assistants that can foster
more efficient and effective development. This technology has
the potential to re-architect the industry and shift the focus from
coding to design, thereby enabling business users to become
developers. However, skilled developers will continue to play a

vital role as they transition to training AI models and utilizing
algorithms to fully unlock the capabilities of generative AI.

As developers enter the new playing field of AI-powered
software development, the importance of security and ethical
considerations will increase. Through the adoption of GenAI and
an open human-AI working model, organizations can achieve
accelerated development, enhanced software reliability, and
the evolution of a new generation of software development.
Generative AI will be a game changer for the software
development industry by enabling continuous learning and
adjustment, unlocking high potential and addressing daunting
challenges.

These advancements promise to make development cycles more efficient, responsive, and user centric. The reveal of o1, an impressive
reasoning model from OpenAI, signals significant progress in software engineering and developer experience, heralding a new era of human-
AI collaboration. The synergy between human creativity and AI capabilities will lead to faster development cycles, more robust and secure
software, and a democratized software development landscape.

• Enhanced code generation

• Intelligent code review

• Natural language interfaces for code

• Ethical AI practices

• Autonomous testing and smart debugging

• Personalized learning and onboarding

• Democratization of software development

• Automated documentation

• Predictive project management

• Agentic AI

Greater
efficiency and
productivity

Faster
time-to-market

Better
communication

and
collaboration

Increase
accuracy and

decision-
making

Boost creativity
and innovation

Improve
software quality

Elevate
developer

satisfaction

Enhance
customer

experience

Deliver faster, better, and more cost-effective solutions with the power of AI

Figure 8 | Qualitative benefits of generative AI tools

© 2025 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

References

About the Author

About Contributors

Srinivasa Sujit Rao
Principal Consultant

Naresh Choudhary, VP - Head - Enterprise Productivity and Engineering Excellence, Infosys

Pradeep Tharmarajan Sivakaminathan, AVP - Senior Industry Principal, Infosys

Amit Gulati, Delivery Manager, Infosys

Pradeep Chandra, Principal Consultant, Infosys

Vasudeva Niranjan Murthy, Principal Consultant, Infosys

• AI First Software Engineering – Intersection of AI & Software Engineering | LinkedIn

• https://www.infosys.com/iki/techcompass/generative-ai.html

• https://queue.acm.org/detail.cfm?id=3454124

• https://github.com/features/copilot

• https://replit.com/

• https://github.com/features/copilot

• https://aws.amazon.com/q/

• https://www.googlecloudcommunity.com/gc/Gemini-Code-Assist/bd-p/cloud-duet-ai

• https://www.infosys.com/services/data-ai-topaz/offerings/responsible-ai.html

• https://www.infosys.com/newsroom/press-releases/2024/launch-small-language-models.html

• Infosys Unveils Small Language Models – Infosys Topaz BankingSLM and Infosys Topaz ITOpsSLM – Built on NVIDIA AI Stack

• https://www.tabnine.com/

• https://arxiv.org/abs/2310.18648

• https://www.forbesindia.com/article/leadership/infosys-is-building-core-ip-around-specialised-ai-models-cto-rafee-tarafdar/87473/1

• https://www.youtube.com/watch?v=--mEjti1eCA&t=70s

• https://openai.com/index/introducing-openai-o1-preview/

• https://github.blog/news-insights/product-news/openai-o1-in-github-copilot/

Infosys Topaz is an AI-first set of services, solutions and platforms using generative AI technologies. It amplifies the potential of humans,
enterprises and communities to create value. With 12,000+ AI use cases, 150+ pre-trained AI models, 10+ AI platforms steered by AI-first
specialists and data strategists, and a ‘responsible by design’ approach, Infosys Topaz helps enterprises accelerate growth, unlock efficiencies
at scale and build connected ecosystems. Connect with us at infosystopaz@infosys.com

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.infosys.com/
https://www.linkedin.com/pulse/ai-first-software-engineering-intersection-naresh-choudhary/
https://www.infosys.com/iki/techcompass/generative-ai.html
https://queue.acm.org/detail.cfm?id=3454124
https://github.com/features/copilot
https://replit.com/
https://github.com/features/copilot
https://aws.amazon.com/q/
https://www.googlecloudcommunity.com/gc/Gemini-Code-Assist/bd-p/cloud-duet-ai
https://www.infosys.com/services/data-ai-topaz/offerings/responsible-ai.html
https://www.infosys.com/newsroom/press-releases/2024/launch-small-language-models.html
https://cxotoday.com/press-release/infosys-unveils-small-language-models-infosys-topaz-bankingslm-and-infosys-topaz-itopsslm-built-on-nvidia-ai-stack/
https://www.tabnine.com/
https://arxiv.org/abs/2310.18648
https://www.forbesindia.com/article/leadership/infosys-is-building-core-ip-around-specialised-ai-models-cto-rafee-tarafdar/87473/1
https://www.youtube.com/watch?v=--mEjti1eCA&t=70s
https://openai.com/index/introducing-openai-o1-preview/
https://github.blog/news-insights/product-news/openai-o1-in-github-copilot/
mailto:infosystopaz%40infosys.com?subject=

