
VIEW POINT

TIME SERIES STORAGE SOLUTION USING
AZURE COSMOS DB CASSANDRA API

Abstract

This article provides an overview of the IoT time series data storage solution
by Infosys for one of their customers, an Oil & Gas company. The solution
leverages Azure Cosmos DB Cassandra API and other Azure services to
monitor, manage, deploy IoT devices remotely.

After reading this article, you will learn:

•	 How Azure Cosmos DB is leveraged for storing time series data

•	 The design, challenges, and optimizations for a typical time series data
solution

•	 Data processing, backup and restore processes

•	 Learnings and considerations while utilizing Azure Cosmos DB for time-
series data

External Document © 2022 Infosys Limited

Overview

In the IoT world, managing an IoT device
means to provision, deploy, monitor,
store & control the device and device
data remotely. Provision & deploy refers
to enabling the systems to track device,
consume data and deploy additional
modules & features to the device. The
IoT devices emit time-series data which
are then monitored & stored to provide
actionable information to manage the
device remotely. We can categorize the IoT
solution into 3 key areas

1.	 Edge – physical IoT device (also referred
to as IoT gateway) deployed in the field
that deals with device registration,
configuration, collating, converting the
sensor analytical data into digital data
and transmitting the data

2.	 Cloud – the digital side of device
dealing with maintaining the device
twins, configuration, interpreting and
processing the transmitted time-series
data

3.	 Application – the processed and
stored data is consumed for analytics
purposes and to derive actionable
information

Here we will limit our discussion to the
cloud part of the IoT solution. We will
discuss how the data from IoT gateways is
processed, the Azure services involved and
their roles leading to finally storing the
data in Azure Cosmos DB.

The IoT solution is intended to provide
a managed service solution for other

energy sector organizations. The product
would be installed at the field locations
for various energy customers, and this
would be utilized to manage, monitor and
control the field devices remotely.

The storage solution was implemented
as a part of overall product redesign and
refactoring from one of the major cloud
service providers to Microsoft Azure. The
availability of the required services across
multiple regions specifically in countries
with data residency requirements acted
as a key driver and major differentiator in
implementing this solution in Microsoft
Azure. Along with this, the Azure Cosmos
DB with Cassandra API enables the
solution to be portable and supports
multi-cloud solution.

Solution architecture

In IoT solutions, the common data

processing pattern is to ingest the time-

series data, handle anomalies and manage

the devices remotely. The IoT solution

ingests large amount of time-series data

from devices and connected sensors

hosted across geographies. The ingested

data is interpreted and processed based

on the relationship between IoT gateways,

associated sensors, configurations and

frequency. Finally, the time series data is

stored with all available observations for

further analytics and processing. The system

also provides the capability to manage the

devices by sending commands back to the

devices. A user portal integrating these

services is provisioned to manage these

devices. These services enable the end-to-

end solution that supports cloud-native,

API-first and data-driven capabilities.

The product is scalable, cloud agnostic,

distributed solution that can be

implemented in both public cloud and on-

premises.

The IoT solution is developed with Azure

services including Azure IoT Hub, Azure

Kubernetes Services, Azure Service Bus,

Azure Cosmos DB, Azure Storage, Azure

Gateway Ingress Controller and Azure API

Management. This enables key features for

our solution such as:

•	 Connect to IoT devices hosted in remote
locations

•	 Custom microservices to manage
identity, configuration, gateway and

device mappings, logs, deployments etc.

•	 Processing and storing the time-series
data

•	 Protect the services from external
vulnerabilities

•	 Use the stored data for predictive
maintenance & downtime identification

•	 End user portal with the ability to
consume the services and manage the
devices

External Document © 2022 Infosys Limited

Below is the overall product solution –

Figure 1. Product Solution Reference Architecture

In the ingestion section, the IoT devices

generated time-series data, sent as

messages, is processed via the IoT Hub.

Each IoT device generates messages with

custom structure based on the sensors

tagged to it. Each message is enriched with

a custom device id enabling us to identify

the exact device and the structure of the

message for us to process.

In the custom processing section, the

custom message was further processed

to unmarshall the message based on

the configurations stored. Multiple

microservices were implemented on Azure

Kubernetes Services to provide various

features such as configuration, mapping,

deployment, storage, notification, and

version management for the product.

The processed message contents are

then pushed further to Azure Cosmos

DB for hot path storage and into the

blob storage for cold path storage. The

storage related microservice would

handle both the read and write of the

time series data to and from Azure

Cosmos DB. The overall Open API specs is

exposed via Swagger for external usage

for the Apps.

For the storage solution, some of the

some of the key requirements were–

1.	 Distributed time-series database that
could be setup for both public and
private clouds

2.	 Cloud agnostic solution enabling
portability

3.	 Fully managed database service with
minimal operations involvement

4.	 Automatic and Instant scalability along
with data replication capabilities

5.	 Option to identify and scale for customer
specific usage patterns

6.	 HA-DR information

Azure Cosmos DB’s Cassandra API was ideal
for these requirements as it offers most
of the required features for the product.
Cosmos DB is a managed service and is not
available in on-premises or in countries with
no Azure presence. However, since we are
using Cassandra API, we could implement
a Cassandra Managed Instance or a custom
Cassandra cluster in the private cloud and

continue to use the product without any issues

External Document © 2022 Infosys Limited

Database and Schema design

In this section, we will discuss the type

of ingested data, ingestion pace, query

patterns, schema design, throughput

allocation and optimization for the

application.

As mentioned earlier, the gateways were

connected to various kinds of sensors,

sensors that could capture images, pressure,

temperature, vibration frequency, flow

speed etc. The data and data type for each

sensor could be different and the overall

storage design was expected to handle this

successfully.

The IoT gateways could be configured to

transmit the data at varied frequency and

varied structure. The frequency of telemetry

was from every 1 second to over 5 minutes.

The overall application was expected to be

write heavy with 90% operations on the

database to be write operations with over

1 million writes to the database every

minute.

The design for data within Azure Cosmos

DB was built based on the usage patterns

that were expected for the solution. The

application had usage patterns to write

and read

1.	 Latest and history data generated by
sensor

2.	 Batch of latest and history data for set
of sensors or IoT gateways

3.	 Need to scale and manage individual
customer data independently

4.	 The history data query would be

mostly for the recent history

Based on the usage patterns and overall
requirements, the design storing data, for
each customer a table was created within
a single key-space in Cosmos DB. The table
structure of for storing data is depicted
below.

CREATE TABLE <keyspace>.<CustomerId> (

deviceId		 text,

tagName		 text,

value 		 double,

timeStamp	 timeuuid,

quality		 bool,

primary key	 (deviceId, tagName),
timeStamp)

) WITH CLUSTERING ORDER BY (timeStamp
DESC);

External Document © 2022 Infosys Limited

This design ensured –

•	 The ability to segregate individual
customer data into separate tables and
the ability to scale them independently
was a significant benefit for choosing
this solution

•	 The cluster key was ordered in
descending order to ensure the latest
data is still on the top

•	 History values of a particular tag can be
queried for required duration

•	 Latest value of a particular tag can be
queried based on top 1 entry for the
primary key

•	 History/latest values for a batch of tags
can be queried

Now, let’s assume a specific use case of
getting the values for a particular device
without providing the tag. The above design
doesn’t support it. For such scenarios, we
could implement an intermediate tag
supplier for getting the data for all tags.

The below image, provides you a scenario
where the microservice processing the time-
series data and pushing to Azure Cosmos
DB, takes the incoming tag names and
updates them in Azure Table Storage with a
mapping against the device. During reads,
if the tag name is not provided, the service
queries that tag names for a particular
device from Azure table and utilizes the tag
names as input to query the Azure Cosmos
DB. This way, Azure Table Storage acts as a

provider layer.

Figure 2. Processing Scenario
Reference Architecture

Azure Cosmos DB throughput is measured

in request units per second (RU/s). RU/s

are provisioned at the key-space level with

manual scaling. Additional monitoring of

actual RU/s consumption is implemented

to scale the amount of RU/s as required.

For testing the overall storage

performance, custom data ingestion was

implemented. The custom application

generated messages of 8-10KB in size. The

overall solution was tested at various scales

of 10,000 rows/min up to 1,500,000 rows/

min into Azure Cosmos DB.

For 1.5M records, it was noticed that the

average time to insert around 50+ tags was

around 110-150ms with P95 < 10ms and P99

< 20ms. The actual RU/s utilized for this scale

was around 135,000 RU/s.

108 107 100 108 101 105 102 111 108 108 103 107
120

107 106 109

216 214
200

216
202 210 204

222 216 216 206 214
240

214 212 218

90

140

190

240

290

12
:0
0:
00

12
:0
1:
00

12
:0
2:
00

12
:0
3:
00

12
:0
4:
00

12
:0
5:
00

12
:0
6:
00

12
:0
7:
00

12
:0
8:
00

12
:0
9:
00

12
:1
0:
00

12
:1
1:
00

12
:1
2:
00

12
:1
3:
00

12
:1
4:
00

12
:1
5:
00

Temperature RPM/10

External Document © 2022 Infosys Limited

Use case

In this section we will drill into one
of many potential use cases of this
solution. Consider a vibration sensor and
a temperature sensor associated to a
gateway deployed at the field location.
The drilling machine will generate
a certain level of vibrations that is
considered normal and operates at an
optimal temperature. Higher than normal
vibrations or deviation in temperature is

Figure 3. Telemetry data

For example, in this case, the intent was to maintain the temperature of the driller below 120 Celsius. However, as the RPM of the driller varied,

the driller hit the defined threshold. The IoT device monitored the telemetry and reported it to the application.

This information was further processed by custom application to send a controlled action back to the IoT gateway to reduce the RPM, bringing

the temperature back under control.

Backup and Restore

Backup: Azure Cosmos DB provides default
option of taking 2 backups every 4 hours,
the same was configured for this solution.

Restore: Microsoft Azure support request
is the only way to restore the data. In case
you are initiating a support request to
restore point in time data, it is advised
to disable the backup process to ensure
the data is not overwritten and a support
request is raised within the retention time.
Microsoft team does not provide any SLA
for the time it takes to do a restoration as
the amount of time it takes depends on
how much data is to be restored

considered a potential issue that could be

hazardous to the drilling machine. In such

cases, we want the rotations on the drilling

machine to reduce or completely cease to

bring the vibrations/temperature under

control.

The IoT gateway collects the data from

sensors and continuously reports the data

to the cloud. The processed data is finally

stored in Azure Cosmos DB as individual

records identifying the customer, device,

the tag (i.e., temperature/vibration

frequency/rotations per minute values)

with appropriate time stamps.

The data stored in Azure Cosmos DB is

further utilized for decision making and

take corrective actions based on the

scenario and requirements.

External Document © 2022 Infosys Limited

Key Azure Cosmos DB design considerations in the solution

•	 Individual table for each customer:
Azure Cosmos DB provides us the
ability to provision RU/s for each
table. Each customer has their data
independently stored in their own
table and can be scaled independent
of other customers. In scenarios where
a particular customer has significantly
higher number of gateways, the specific
customer table can be provisioned with
additional RU/s as needed. This can also
be helpful in the case of a business-
critical event, where there is a need to
increase telemetry frequency, individual
tables can be scaled, and the charges
could be tracked for each customer.

•	 RU/s allocation and configuration: Azure
Cosmos DB charges are based on the
Request Unit (RU) consumed/allocated
per second.

o	 If the data ingestion is at a
predictable rate, it is advised to
use standard (manual) provisioned
throughput.

o	 If the data ingestion is un-
predictable, auto scale throughput
is advised. This means the maximum
expected RU/s will be defined. This
can be monitored to ensure the

actual RU/s are below the maximum
expected RU/s.

o	 With the key space level RU allocation,
every table within the key space
will be able to utilize the available
RUs if it requires. For example, if we
have 4 tables within a key space,
the allocated RUs are equally made
available for all 4 tables. If one of
these tables tend to utilize more than
the initially awarded RUs, they can do
that provided the remaining tables
have not completely consumed the
allocated RUs.

o	 Along with the key space level RU
allocation, we can additionally
allocate RUs at individual table level.
This will provide the additional
support in cases where a specific table
might need additional RU allocation

o	 In use cases where we have limited
deviation in the ingestion pace, the
RU requirement is predictable and is
more controlled. In such scenarios,
allocating RUs at the key space level
will support most of the scenarios.
This is more beneficial compared to
allocating RUs at individual level for
use cases like this. This is because,

with varied ingestion pace across
multiple tenants, not all systems
will need the same number of RUs
dedicated all the time. With the RU
allocation at key space level, you can
potentially support for peak usage
without having to allocate RUs at
table level for peak usage.

•	 Automating throughput provisioning:
Considering the desired RU/s was
manual for this solution, during peak
periods for the customers, additional
throughput was allocated at table
level via automatically executed
scripts. The actual RU/s consumed was
monitored and when it reached 70%
of the provisioned amount, additional
throughput was added to ensure the
overall solution is not impacted.

•	 Archive strategy: Considering the
allocation of minimum RU/s is
dependent on the read-write frequency
and on the stored data in the database.
As the storage increases, the required
minimum RU/s increases as well. It is
essential to have an archival and TTL
strategy that will enable us to optimize
the throughput utilization. The change
feed feature in Azure Cosmos DB can
help in moving the data out of Azure
Cosmos DB into blob storage.

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Author About the Mentor

Mandanna Appanderanda Nanaiah
Principal - Enterprise Applications; CLOUD
PROFESSIONAL

Ravi Joshi
Principal Technology Architect; OPEN SOURCE
PROFESSIONAL

mailto:Mandanna_AN@infosys.com
mailto:Ravi_Joshi01@infosys.com
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Fmandanna-an%2F&data=05%7C01%7CRajigomathi_T%40infosys.com%7Cdd310f848d064f49fcf008da819c8d94%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C637964806635955692%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=2SueBiHASwcpEHnBPeopu6soiIDL2hA9JQwlmB7SSkM%3D&reserved=0
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Fravi-joshi-37200238%2F&data=05%7C01%7CRajigomathi_T%40infosys.com%7Cdd310f848d064f49fcf008da819c8d94%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C637964806635955692%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=k3iQymn6NvYSLwoSbelkoPVutoYiiphKyBDMvICr10w%3D&reserved=0
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

